トップ :: H 電気 :: H01 基本的電気素子

【発明の名称】 イオン発生装置用トランス、イオン発生装置および電気機器
【発明者】 【氏名】世古口 美徳

【要約】 【課題】巻線容量を小さく抑え、結合係数を大きく確保でき、かつ小型・薄型のイオン発生装置に適したイオン発生装置用トランスと、そのトランスを用いたイオン発生装置と、そのイオン発生装置を用いた電気機器とを提供する。

【構成】イオン発生装置用トランス20は、磁性体を有するコア28aと、コア28aを内部に挿入されたボビン29と、ボビン29に巻き付けられ、互いに絶縁された1次巻線21aおよび2次巻線22aとを備えている。ボビン29は、2次巻線22aの巻線領域が5以上15以下の数のセクションに分割された構成を有している。
【特許請求の範囲】
【請求項1】
イオン発生電極にイオンを発生させるために電圧を昇圧して供給するイオン発生装置用トランスであって、
磁性体を有するコアと、
前記コアを内部に挿入されたボビンと、
前記ボビンに巻き付けられ、互いに絶縁された1次巻線および2次巻線とを備え、
前記ボビンは、前記2次巻線の巻線領域が5以上15以下の数のセクションに分割された構成を有している、イオン発生装置用トランス。
【請求項2】
請求項1に記載の前記イオン発生装置用トランスと、
入力電源により電源供給を受けて前記トランスを駆動するためのトランス駆動回路と、
前記トランスにより昇圧された電圧を印加されることで正イオンおよび負イオンの少なくともいずれかを生じさせるためのイオン発生素子とを備えた、イオン発生装置。
【請求項3】
請求項2に記載の前記イオン発生装置と、
前記イオン発生装置で生じた正イオンおよび負イオンの少なくともいずれかを送風気流に乗せて送るための送風部とを備えた、電気機器。
【発明の詳細な説明】【技術分野】
【0001】
本発明は、イオン発生装置用トランス、イオン発生装置および電気機器に関し、特に、イオン発生電極にイオンを発生させるために電圧を昇圧して供給するイオン発生装置用トランス、それを用いたイオン発生装置および電気機器に関するものである。
【背景技術】
【0002】
高圧トランスの種類は、大きく2種類に区分される。その1つは、内部に磁性体で作られるコアを挿入した樹脂製のボビンに1次巻線、2次巻線の少なくとも2つの巻線を巻きつけた構造のもので巻線トランスといわれる。巻線トランスは単純には交流をそのまま昇圧する変圧器や昇圧トランスといわれ、出力電圧と入力電圧との比は2次巻線と1次巻線との巻数比で決まる大型のものから、コンデンサ放電回路でのインパルス波形で駆動するスイッチングトランスなどがある。後者は小型化が可能であり、接続される負荷の大きさと1次、2次のインダクタンスや高圧トランスを駆動するための高圧トランス駆動回路の定数により出力電圧を調整される。
【0003】
もう1つはセラミックの圧電現象を応用した圧電トランスといわれるものである。この圧電トランスを採用したイオン発生装置としては、例えば特開2002−374670号公報に記載されたものがある。このイオン発生装置ではイオン発生電極に高電圧を供給する圧電トランスと、その圧電トランスを駆動するための駆動回路とが、ケース内に搭載されている。
【0004】
また高圧トランスに関しては圧電トランスと巻線トランスの違いや有利不利点が記載されており、圧電トランスでは巻線トランスよりもトランス自体がコンパクト化できるが、周辺回路が複雑になることや入力電源が直流電源に限定されることが記載されている。
【0005】
巻線トランスに関しては、例えば国際公開第02/015647号に記載されたものがある。この文献には、ランプなどの点灯装置に使用される高電圧発生トランスの内部構造として、コアの外側に複数のセクションに分割して配設される2次巻線のボビン形状が記載されている。
【0006】
イオン発生装置に関して、通常、イオン発生電極に高電圧を印加し、イオンを発生させるためには、数kVの高電圧が必要となる。そのためには、巻線トランスとしては2次巻線には通常数千ターンの巻き数が必要となり、相応の大きさが必要となる。通常、2次巻線はその総巻数を数セクションに分割して巻線される。その理由は、上記の事例のように一箇所に数千ターンを巻いてしまうと、数kVの電位差が生じる巻き始めと巻き終わりが近接する可能性があり、巻線表面の被覆が絶縁破壊するため、それを回避する策として総巻数が数セクション程度に分割されている。さらにはモールドなどの措置により、絶縁が強化されている。
【0007】
イオン発生素子の種類は、大きく2種類に区分される。その1つは、金属線、鋭角部を持った金属板、針形状の金属などを放電電極とし、大地電位の金属板やグリッドなどを対向電極としたもの、あるいは対向電極を大地として特に対向電極を配置しないものである。この種類のイオン発生素子では、空気が絶縁体の役割を果たす。このイオン発生素子は、電極に高電圧を印加した際に、鋭角部をした電極の先端で電界集中が生じ、その先端の極近部分の空気が絶縁破壊することで放電現象を得る方式である。
【0008】
もう1つは、高耐圧の誘電体内部に埋没された誘導電極と、誘電体表面に配置された放電電極との一対で構成されたものである。この種類のイオン発生素子は、電極に高電圧を印加した際に、表面の放電電極の外縁部近傍で電界集中が生じ、その極近部分の空気が絶縁破壊することで放電現象を得る方式である。
【0009】
放電現象を利用した多くのイオン発生装置が実用化されている。これらのイオン発生装置は通常、イオンを発生させるためのイオン発生素子と、イオン発生素子に高電圧を供給するための巻線型や圧電素子型の高圧トランスと、高圧トランスを駆動するための高圧トランス駆動回路と、コネクタなどの電源入力部とにより構成されている。
【特許文献1】特開2002-374670号公報
【特許文献2】国際公開第02/015647号
【発明の開示】
【発明が解決しようとする課題】
【0010】
上記の特許文献1に記載されたような圧電トランスでは、原理的に一定の長さが必要であり、また出力の負荷量に制限があり、また駆動回路が複雑で部品点数が増えるという問題がある。
【0011】
また特許文献2に記載の巻線トランスでは、ボビンのセクション毎に巻線が分割されて巻かれているが、巻線同士の間に容量成分が発生して、1つのセクションでまとまった容量成分が発生する。この巻線容量は高圧トランスには負荷になり、巻線容量が大きくなるほど出力電圧が低下してしまい、トランスの小型化への障害になってしまう。
【0012】
規定サイズに収まる小型化・薄型化のイオン発生装置を実現するために、高圧トランスにも小型化・薄型化が求められている。またこの巻線容量以外に、巻線トランスの要素として1次巻線と2次巻線との結合係数を考慮する必要もある。
【0013】
イオン発生装置に搭載する高圧トランスに望まれる性能として、前記のように小型・薄型であることに加え、少ない入力パワーで、接続されるイオン発生素子を放電させるための高電圧出力が得られることにあり、そのためには適切な結合係数を確保しながらも、2次側の容量成分を低減させる必要がある。
【0014】
本発明は、上記の課題に鑑みてなされたものであり、その目的は、巻線容量を小さく抑え、結合係数を大きく確保でき、かつ小型・薄型のイオン発生装置に適したイオン発生装置用トランスと、そのトランスを用いたイオン発生装置と、そのイオン発生装置を用いた電気機器とを提供することである。
【課題を解決するための手段】
【0015】
本発明のイオン発生装置用トランスは、イオン発生電極にイオンを発生させるために電圧を昇圧して供給するイオン発生装置用トランスであって、磁性体を有するコアと、そのコアを内部に挿入されたボビンと、そのボビンに巻き付けられ、互いに絶縁された1次巻線および2次巻線とを備え、ボビンは、2次巻線の巻線領域が5以上15以下の数のセクションに分割された構成を有していることを特徴とするものである。
【0016】
本発明のイオン発生装置用トランスによれば、2次巻線の巻線領域が5以上15以下の数のセクションに分割されているため、巻線容量を小さく抑えることができるとともに、結合係数を大きく確保することができ、さらに小型化・薄型化を図ることもできる。
【0017】
2次巻線の巻線領域のセクションの分割数が5未満の場合、1セクションあたりの巻線容量が大きくなりすぎて、イオン発生素子を放電させるための高電圧出力を少ない入力パワーで得ることができなくなる。また2次巻線の巻線領域のセクションの分割数が15を超える場合、結合係数が小さくなりすぎてイオン発生装置に適さなくなるとともに、トランスの寸法が大きくなりすぎて小型化・薄型化に適さなくなり、さらに製造時間も長くなる。
【0018】
本発明のイオン発生装置は、上記のイオン発生装置用トランスと、入力電源により電源供給を受けてトランスを駆動するためのトランス駆動回路と、トランスにより昇圧された電圧を印加されることで正イオンおよび負イオンの少なくともいずれかを生じさせるためのイオン発生素子とを備えている。
【0019】
本発明のイオン発生装置によれば、上記のイオン発生装置用トランスが備えられているため、イオン発生素子を放電させるための高電圧出力を少ない入力パワーで得ることができ、かつ小型化・薄型化することができる。
【0020】
本発明の電気機器は、上記のイオン発生装置と、イオン発生装置で生じた正イオンおよび負イオンの少なくともいずれかを送風気流に乗せて送るための送風部とを備えている。
【0021】
本発明の電気機器によれば、イオン発生装置で生じたイオンを送風部により気流に乗せて送ることができるため、たとえば空調機器において機外にイオンを放出することができ、また冷蔵機器において庫内または庫外にイオンを放出することができる。
【発明の効果】
【0022】
以上説明したように本発明によれば、2次巻線の巻線領域が5以上15以下の数のセクションに分割されているため、巻線容量を小さく抑え、結合係数を大きく確保でき、かつ小型・薄型のイオン発生装置に適したイオン発生装置用トランスを得ることができる。このため、イオン発生素子を放電させるための高電圧出力を少ない入力パワーで得ることができ、かつ小型・薄型のイオン発生装置を得ることができる。よって、これまで大きさの制約によりイオン発生装置を搭載できなかった電気機器への搭載が可能になり、イオン発生装置を搭載した電気機器への用途拡大や搭載箇所の自由度を拡大することが可能となる。
【発明を実施するための最良の形態】
【0023】
以下、本発明の実施の形態について図に基づいて説明する。
図1は、本発明の一実施の形態におけるイオン発生装置用トランスの構成を概略的に示す平面図である。図2は図1に示すトランスの内部のコアを示す図であり、図3は図2の矢印A方向から見た側面図である。
【0024】
図1〜図3を参照して、本実施の形態の高圧トランス20は、たとえば巻線トランスよりなっている。この巻線トランス20は、イオン発生電極(図示せず)にイオンを発生させるために電圧を昇圧して供給するイオン発生装置用トランスであって、ボビン29と、コア(鉄心)28aと、1次巻線21aと、2次巻線22aとを主に有している。
【0025】
ボビン29はたとえば樹脂製であり、1次巻線部21と2次巻線部22とを有している。1次巻線部21と2次巻線部22との間には分離壁25が設けられている。また2次巻線部22は、複数の分離壁26によって複数のセクションに分離されている。
【0026】
コア28aは磁性体を有する材料、たとえばフェライトなどの材料よりなっている。このコア28aは、ボビン29の1次巻線部21と2次巻線部22とを貫通するようにボビン29の内部に挿入されている。
【0027】
1次巻線21aは、ボビン29の1次巻線部21に所定回数巻き付けられており、その巻き始め部分は1次巻線巻き始め端子23aに電気的に接続されており、その巻き終わり部分は1次巻線巻き終わり端子23bに電気的に接続されている。
【0028】
2次巻線22aは、ボビン29の2次巻線部22に巻き付けられており、1次巻線21aとは絶縁されている。2次巻線22aは、最初のセクション27aに規定回数巻かれた後、分離壁26の切欠26aを通して隣のセクションに規定回数巻かれ、同様にして、各セクション毎に規定回数巻かれた後に、最終のセクション27bに規定回数巻かれている。2次巻線22aの巻き始め部分は2次巻線巻き始め端子24aに電気的に接続されており、その巻き終わり部分は2次巻線巻き終わり端子24bに電気的に接続されている。
【0029】
上記の巻線トランス20において、ボビン29は、2次巻線部22が分離壁26によって5以上15以下の数のセクションに分割された構成を有している。図1および図2においては、分離壁26によって2次巻線部22がたとえば10個のセクションに分割された構成が示されている。
【0030】
なお上記の巻線トランス20に用いられるコア28aは、図4に示すように棒状の形状を有しているが、図5に示すように棒状の端部に棒状部分よりも寸法が拡大されたフランジ部28bを有する形状であってもよい。図6に示すように、フランジ部28bを有するコア28aを巻線トランス20に用いることにより、1次巻線21aと2次巻線22aとの結合係数を若干増加させることができる。
【0031】
次に、本実施の形態の高圧トランスにおいて、セクションの分割数を5以上15以下とした理由について説明する。
【0032】
巻線トランスの要素としては、インダクタンスと、抵抗成分と、巻線容量と、1次巻線および2次巻線の結合係数とがある。
【0033】
インダクタンスの値は磁性体であるコアを内部に配置したボビンに巻線を巻き付けることで発生する値である。抵抗成分はボビンに巻き付ける巻線そのものの抵抗成分であり、巻数すなわち線長に比例して大きくなる値である。容量成分は巻線をボビンに巻き付けた際の巻線同士の間で発生する静電容量の集合である。
【0034】
図7は、容量成分が巻線同士の間で発生する静電容量の集合であることを説明するための図であり、図1のたとえば領域R1の断面を示す図である。図7を参照して、ボビン29の各セクション毎に2次巻線22aが整列しながら数層に重ねて巻かれている。このため、2次巻線22a同士の間に容量成分C2が発生して、1つのセクションでまとまった容量成分C1が発生することになる。
【0035】
また、巻線トランスに関して上記の内容を簡易的な等価回路で記載すると図8および図9に示すようになる。図8および図9を参照して、1次巻線21aは一般には巻数が非常に少ないため、抵抗成分や容量成分は非常に小さく無視できる程度である。しかし、2次巻線22aに関しては通常数千ターンを要し、インダクタンス成分Lに加え、線長に比例して発生する抵抗成分Rが直列に存在し、上記の巻線間の容量成分Cが並列に入った形となる。抵抗成分Rや容量成分Cは外部に接続されるイオン発生素子同様に高圧トランスには負荷になる。すなわち高圧トランス自身が負荷をもっていることになる。
【0036】
図10は、一例としてある回路定数の組合せにおける2次側の容量と出力電圧の関係をグラフ化した図である。図10より、2次側の容量が大きくなると出力電圧が低下してしまい、容量成分の増大がトランスの小型化への障害になることがわかる。
【0037】
ここで、インダクタンスはイオン発生電極を駆動するために必要であり、そのための巻数(すなわち線長)は必要である。このため、線長に比例して発生する抵抗成分を低下させることは巻数を低減するしかなく、高圧トランス単独では困難である。しかし、容量成分に関してはボビンへの巻き方を工夫すれば低減は可能である。
【0038】
以下の実施例で説明するように、本願発明者は、セクションの分割数を多くすることにより、2次巻線全体の巻線容量を低減できることを確認した。これは、多数に分割したセクション全体の容量は、各セクションの容量成分の直列接続と考えられるため、セクションの分割数が増すほどセクション全体の容量が減少するものと考えられる。
【0039】
また、1セクションあたりの巻数を少なくすることで、ボビンの各セクションの仕切りとなる分離壁26の高さを低くできるため、高圧トランスの小型化・薄型化が可能になる。
【0040】
ただし、セクションの分割数を多くすれば弊害も生じる。一つは1次巻線と2次巻線との結合係数の低下である。二つ目はトランスの全長が増すことである。さらに三つ目は製造時間が長くなり、製造効率が悪くなることである。これらのことを考慮して、本実施の形態の高圧トランスでは、セクションの分割数は少ない場合で5、多くても15である。
【0041】
このように本実施の形態の高圧トランスによれば、2次巻線部22が分離壁26によって5以上15以下の数のセクションに分割されているため、巻線容量を小さく抑えることができるとともに、結合係数を大きく確保することができ、さらに小型化・薄型化を図ることもできる。
【0042】
高圧トランスの2次側の静電容量が下がれば、同じ入力パワーであってもトランスの出力電圧を高く発生させることが可能になる。トランスの出力電圧があがれば、場合によってはインダクタンスを低減させることも可能で、すなわち巻数を減らすことができ、さらに小型化を図ることができる。
【0043】
よって、本実施の形態のトランスをイオン発生装置に用いることにより、イオン発生素子を放電させるための高電圧出力を少ない入力パワーで得ることができ、かつ小型化・薄型化することができる。
【0044】
また、このイオン発生装置を電気機器に用いることにより、イオン発生装置で生じたイオンを送風部により気流に乗せて送ることができるため、たとえば空調機器において機外にイオンを放出することができ、また冷蔵機器において庫内または庫外にイオンを放出することができる。
【0045】
次に、上記の高圧トランスを用いたイオン発生装置について説明する。
図11は、上記の高圧トランスを用いたイオン発生装置の構成を概略的に示す分解斜視図である。図12は、図11に示したイオン発生装置において蓋体を除いた状態での概略平面図である。また図13は、図12のXIII−XIII線に沿う概略断面図である。
【0046】
図11〜図13を参照して、本実施の形態のイオン発生装置50は、高圧回路5(図13)と、イオン発生素子10と、高圧トランス20と、高圧トランス駆動回路30(図13)と、電源入力コネクタ30b(図13)と、外装ケース40とを有している。
【0047】
高圧トランス駆動回路30は、外部からの入力電圧を受けて高圧トランス20を駆動するためのものである。高圧トランス20は、上述したように、高圧トランス駆動回路30により駆動されて入力電圧を昇圧するためのものである。イオン発生素子10は、高圧トランス20により昇圧された電圧を印加されることで正イオンおよび負イオンの少なくともいずれかを生じさせるものである。
【0048】
外装ケース40は、本体40aと、蓋体40bとを有している。本体40aの内部は、イオン発生素子10を配置するためのイオン発生素子ブロック40Aと、高圧トランス20を配置するための高圧トランスブロック40Bと、高圧トランス駆動回路30を配置するための高圧トランス駆動回路ブロック40Cとに平面的に区画されている。各ブロック40A、40B、40Cは、たとえば本体40a内に配置された壁41、42、43により仕切られている。
【0049】
イオン発生素子10は、高圧回路5の構成素子を取付けられた状態でイオン発生素子ブロック40A内に収容されている。高圧トランス20は、基板に搭載されない状態で高圧トランスブロック40B内に収容されている。高圧トランス駆動回路30および電源入力コネクタ30bは基板31に搭載された状態で高圧トランス駆動回路ブロック40C内に収容されている。電源入力コネクタ30bの一部は、外装ケース40の外部に露出しており、外部から電源をコネクタ接続できる構造となっている。
【0050】
本体40a内に収容された各機能素子は後述するように適宜、電気的に接続され、かつモールドされており、最後に、本体40aの上方開口部を閉じるように蓋体40bが取付けられている。なお、この蓋体40bには、イオン放出用の孔44が設けられている。
【0051】
次に、上記の各機能素子について、イオン発生素子10および高圧トランス駆動回路30の順で具体的に説明する。
【0052】
図14および図15は、図11〜図13に示すイオン発生装置に用いられるイオン発生素子の構成を概略的に示す分解斜視図および平面図である。図16は図15のXVI−XVI線に沿う概略断面図である。
【0053】
図14〜図16を参照して、イオン発生素子10は、たとえばコロナ放電により正イオンおよび負イオンの少なくともいずれかを生じさせるためのものであり、誘導電極1と、放電電極2と、支持基板3とを有している。
【0054】
誘導電極1は、一体の金属板からなっており、かつ放電電極2の個数に対応して天板部1aに設けられた複数の貫通孔1bを有している。この貫通孔1bは、コロナ放電により発生するイオンをイオン発生素子10の外部へ放出するための開口部である。
【0055】
本実施の形態では貫通孔1bの個数はたとえば2個であり、貫通孔1bの平面形状はたとえば円形である。貫通孔1bの周縁部分は、たとえば絞り加工などの工法により、金属板を天板部1aに対して屈曲させた屈曲部1cとなっている。この屈曲部1cにより、図16に示すように、貫通孔1bの周縁の壁部の厚みT1が天板部1aの板厚T2よりも厚くなっている。
【0056】
また誘導電極1は、たとえば両端部に、金属板の一部を天板部1aに対して屈曲させた基板挿入部1dを有している。この基板挿入部1dは、幅の広い支持部分1d1と、幅の狭い挿入部分1d2とを有している。支持部分1d1の一方端は天板部1aに繋がっており、他方端は挿入部分1d2に繋がっている。
【0057】
また誘導電極1は、金属板の一部を天板部1aに対して屈曲させた基板支持部1eを有してもよい。この基板支持部1eは、基板挿入部1dの屈曲方向と同じ方向(図14において下側)に屈曲している。基板支持部1eの折り曲げ方向の長さは、基板挿入部1dの支持部分1d1の折り曲げ方向の長さと略同一である。
【0058】
なお屈曲部1cは基板挿入部1dおよび基板支持部1eと同じ方向(図14において下側)に折り曲げられていてもよく、また基板挿入部1dおよび基板支持部1eと逆の方向(図14において上側)に折り曲げられていてもよい。また屈曲部1c、基板挿入部1dおよび基板支持部1eは、天板部1aに対してたとえば略直角に屈曲している。
【0059】
放電電極2は針状の先端を有している。支持基板3は、放電電極2を挿通させるための貫通孔3aと、基板挿入部1dの挿入部分1d2を挿通させるための貫通孔3bとを有している。
【0060】
針状の放電電極2は、貫通孔3aに挿入または圧入されて支持基板3を貫通した状態で支持基板3に支持されている。これにより、放電電極2の針状の一方端は支持基板3の表面側に突き出しており、また支持基板3の裏面側に突き出した他方端には、図16に示すように、半田4によりリード線や配線パターンを電気的に接続することが可能である。
【0061】
誘導電極1の挿入部分1d2は貫通孔3bに挿入されて支持基板3を貫通した状態で支持基板3に支持されている。また支持基板3の裏面側に突き出した挿入部分1d2の先端には、図16に示すように、半田4によりリード線や配線パターンを電気的に接続することが可能である。
【0062】
誘導電極1が支持基板3に支持された状態で、支持部分1d1と挿入部分1d2との境界にある段部が支持基板3の表面に当接する。これにより誘導電極1の天板部1aは支持基板3に対して所定の距離を保って支持されている。また誘導電極1の基板支持部1eの先端が支持基板3の表面に補助的に当接している。つまり、基板挿入部1dと基板支持部1eとにより、誘導電極1は支持基板3に対してその厚み方向に位置決めすることが可能である。
【0063】
また誘導電極1が支持基板3に支持された状態で、放電電極2は、その針状の先端が、図15に示すように円形の貫通孔1bの中心Cに位置するように、かつ図16に示すように貫通孔1bの周縁部の厚み(つまり屈曲部1cの屈曲長さ)T1の範囲内に位置するように配置されている。また支持基板3の裏面(半田面)には、図16に示すように高圧回路5の構成素子が取付けられている。
【0064】
寸法上の一例として、貫通孔1bの周縁部の厚み(つまり屈曲部1cの屈曲長さ)T1は1mm以上2mm以下程度であり、板状の誘導電極1の板厚T2は0.5mm以上1mm以下程度である。また支持基板3上面から誘導電極1の表面までの厚みは2mm以上4mm以下程度である。これにより、このイオン発生素子10を内部に収容したイオン発生装置50の厚みを5mm以上8mm以下程度に薄型化することができる。
【0065】
図13を参照して、高圧トランス駆動回路30は、電源入力コネクタ30bからの電源供給を受けて、これをコンデンサに充電し、規定以上の電圧に達すれば半導体スイッチなどを用いてコンデンサに充電した電荷を放電させ、高圧トランス20の1次側に電流を供給する機能を有している。高圧トランス駆動回路30を構成する素子30aは、基板31の裏面に取付けられている。また基板31の裏面には、電源入力コネクタ30bの一部または全部が取付けられている。この高圧トランス駆動回路30および電源入力コネクタ30bを搭載した基板31が高圧トランス駆動回路ブロック40C内に配置された状態で、電源入力コネクタ30bは外装ケース40の外部に電気的に接続できるように構成されている。
【0066】
この実施の形態では、高圧トランス駆動回路ブロック40Cの基板31の半田面が図13の上側で部品面(部品取付面)が図13の下側であり、電源入力コネクタ30bは図13の下側において露出している。
【0067】
図13を参照して、外装ケース40の蓋体40bは、イオン発生素子10の貫通孔1bに対向する壁部にイオン放出用の孔44を有している。これにより、イオン発生素子10で生じたイオンがこの孔44を通じてイオン発生装置50の外部へ放出される。上記のようにイオン発生素子10の一方の放電電極2は正イオンを発生させるものであり、他方の放電電極2は負イオンを発生させるものであるため、外装ケース40に設けられた一方の孔44は正イオン発生部となり、他方の孔44は負イオン発生部となる。
【0068】
イオン放出用の孔44は、感電防止のために、通電部である誘導電極1に直接手が触れないように誘導電極1の貫通孔1bの孔径よりも小さい径に設定されている。さらに放電電極2の先端位置も、(外装ケース40の蓋体40bの厚み)+(誘導電極1の天板部1aの厚み)+(誘導電極1の屈曲長さ)でトータル1.5mm〜3.0mm程度、外装ケース40の表面から奥まった構造とされている。このように誘導電極1および放電電極2の先端に手が触れないように、イオン放出用の孔44の径は小さく設定される必要があるが、逆に小さすぎるとイオン放出量が減少するため、たとえば6mmの寸法とされている。
【0069】
このイオン発生装置50は、上述したように5mm以上8mm以下の厚みを有しているが、もちろんそれ以上の厚みであってもよい。
【0070】
次に、各機能素子の電気的接続の状態について説明する。
図17は、本発明の一実施の形態におけるイオン発生装置の機能ブロック図であり、各機能素子の電気的接続を示す図である。図17を参照して、イオン発生装置50は、上述したように、外装ケース40と、イオン発生素子ブロック40Aに配置されたイオン発生素子10および高圧回路5と、高圧トランスブロック40Bに配置された高圧トランス20と、高圧トランス駆動回路ブロック40Cに配置された高圧トランス駆動回路30と、電源入力コネクタ30bとを有している。なお、電源入力コネクタ30bは一部が高圧トランス駆動回路ブロック40C内に配置されており、また他の一部が外装ケース40の外部に露出しており、外部から電源をコネクタ接続できる構造となっている。
【0071】
この電源入力コネクタ30bは、入力電源としての直流電源や商用交流電源の供給を受ける部分である。電源入力コネクタ30bは高圧トランス駆動回路30に電気的に接続されている。この高圧トランス駆動回路30は高圧トランス20の1次側に電気的に接続されている。この高圧トランス20は、1次側に入力された電圧を昇圧して2次側に出力するためのものである。高圧トランス20の2次側の一方はイオン発生素子10の誘導電極1に電気的に接続されており、2次側の他方は高圧回路5を通じて放電電極2に電気的に接続されている。
【0072】
高圧回路5は、正イオンを発生させる放電電極2には誘導電極1に対し正極性の高電圧を印加し、また負イオンを発生させる放電電極2には誘導電極1に対し負極性の高電圧を印加するよう構成されている。これにより、正と負の2極性のイオンを発生させることができる。もちろん、高圧回路5の構成により正イオンのみ、または負イオンのみを発生させることも可能である。
【0073】
具体的な接続の構成としては、たとえば図12に示すように高圧トランス20は1次側の端子23a、23bと2次側の端子24a、24bとを有しており、端子23a、23bは高圧トランス駆動回路30を搭載する基板31の表面(半田面)に半田接続により直接接続されており、端子24a、24bは高圧回路5を搭載する支持基板3の裏面(半田面)に半田接続により直接接続されている。また端子23a、23b、24a、24bによらずにリード線により上記の接続がおこなわれてもよい。
【0074】
また電源入力コネクタ30bと高圧トランス駆動回路30とは、図13に示すように基板31上に搭載された状態で、図示しないリード線や配線パターンにより電気的に接続されている。また高圧トランス20とイオン発生素子10および高圧回路5とは、図13に示すように支持基板3上に搭載された状態で、図示しないリード線や配線パターンにより電気的に接続されている。
【0075】
次に、モールドについて説明する。
上記のように各機能素子が外装ケース内に収容されて電気的に接続された状態で適宜モールドが施されている。ここで、イオン発生素子ブロック40Aや高圧トランスブロック40Bは高電圧部であるため、イオン発生素子ブロック40A内のイオン発生部分(支持基板3の表面側)を除き、支持基板3の裏面側(半田面側)および高圧トランスブロック40Bを樹脂モールド(たとえばエポキシ樹脂)により絶縁を強化することが望ましい。また高圧トランス20をケース(図示せず)内に入れたうえで高圧トランスブロック40Bに収容する場合には、そのケース内をモールドすることで独立してモールドすることが好ましい。また図11に示すように高圧トランス20を単独で高圧トランスブロック40B内に収容する場合には、イオン発生素子ブロック40Aの支持基板3の裏面側とともに高圧トランス20をモールドすることが好ましい。
【0076】
後者の場合、外装ケース40には高圧トランスブロック40Bからのモールドが高圧トランス駆動回路ブロック40Cに流れ込まないように壁41が設けられているが、一方で高圧トランス20の入力端子23を高圧トランス駆動回路30に接続するための接続部(リード線など)を通すことも必要になる。そのため図11に示すように壁41の一部に、接続部を通すための切欠部41aを設けることが好ましい。
【0077】
高圧トランス駆動回路ブロック40Cも、イオン発生装置50の使用環境によりモールドされてもよい。基本的にこのブロック40Cは印加電圧が家庭用の電源電圧であるため、他のブロックと比較して低電圧であり、高湿や多塵などの特殊環境でない限りは外装ケース40に覆われているのでモールドまでは必要とされない場合もあり、モールドを選択できる構造(モールド可能な構成)とすることができる。
【0078】
ここでモールドを選択できる構造(モールド可能な構成)とは、高圧トランス駆動回路30および電源入力コネクタ30bを搭載した基板31が高圧トランス駆動回路ブロック40C内に配置された状態で、モールド材を基板31の表面側(蓋側)から裏面側(本体40aの底部側)に回り込ませることが可能で、かつ外装ケース40の本体40aの底部からモールド材が漏れないように構成されていることを意味する。
【0079】
つまり、モールドは各機能素子を外装ケース40内に配置した後に行なわれるため、基板31の表面側からモールド材を注入しても、部品搭載面である裏面側にまでモールド材が回り込むように外装ケース40および基板31が構成されていなければならない。また、モールド材は注入の際には液体であるため、外装ケース40の底部が密閉されていないと外装ケース40の外部に漏れ出してしまうため、モールド材が漏れ出さないように外装ケース40の底部を密閉構造とする必要がある。
【0080】
また上記においては、イオン放出用の孔44を外装ケース40の蓋体40bに設けた場合について説明したが、この孔44は外装ケース40の本体40aの底面に設けられてもよい。つまり、蓋体40bはイオン放出用の孔44を設ける側とされてもよく、またイオン放出用の孔44を設けない側とされてもよい。
【0081】
上記のイオン発生装置において正イオンまたは負イオンのいずれか一方の極性のイオンを発生させる場合、イオンを発生させる放電電極2の針状の先端位置を誘導電極1の貫通孔1bの中心に合わせ、かつ誘導電極1の貫通孔1bの厚みT1の範囲内に配置することにより、誘導電極1と放電電極2の針状の先端とが空気空間を挟んで対向するようにする。
【0082】
また正イオンと負イオンの両極性のイオンを放出させるためには、正イオンを発生させる放電電極2の針状の先端位置と負イオンを発生させる放電電極2の針状の先端位置との各々を、互いに所定の距離を確保して配置し、かつ誘導電極1の貫通孔1bの中心に合わせ、かつ誘導電極1の貫通孔1bの厚みT1の範囲内に配置することにより、誘導電極1と放電電極2の針状の先端とが空気空間を挟んで対向するようにする。
【0083】
上記のイオン発生素子10において、板状の誘導電極1と針状の放電電極2とを上記のように所定の距離を確保して配置し、誘導電極1と放電電極2との間に高電圧を印加すると、針状の放電電極2の先端でコロナ放電が生じる。このコロナ放電により正イオンおよび負イオンの少なくともいずれかのイオンが発生し、このイオンが誘導電極1に設けられた貫通孔1bからイオン発生素子10の外部に放出される。さらに送風を加えることで、より効果的にイオンを放出することが可能となる。
【0084】
正イオンと負イオンとの双方を生じさせる場合、一方の放電電極2の先端では正コロナ放電を発生させて正イオンを発生させ、他方の放電電極2の先端では負コロナ放電を発生させて負イオンを発生させる。印加する波形はここでは特に問わず、直流、正負にバイアスされた交流波形や正負にバイアスされたパルス波形などの高電圧とする。電圧値は放電を発生させるに十分かつ、所定のイオン種は生成させる電圧領域を選定する。
【0085】
ここで、正イオンは、水素イオン(H+)の周囲に複数の水分子が付随したクラスターイオンであり、H+(H2O)m(mは任意の自然数)として表される。また負イオンは、酸素イオン(O2-)の周囲に複数の水分子が付随したクラスターイオンであり、O2-(H2O)n(nは任意の自然数)として表される。
【0086】
正イオンおよび負イオンの両極性のイオンを放出する場合には、空気中の正イオンであるH+(H2O)m(mは任意の自然数)と、負イオンであるO2-(H2O)n(nは任意の自然数)とを略同等量発生させることにより、両イオンが空気中を浮遊するカビ菌やウィルスの周りを取り囲み、その際に生成される活性種の水酸化ラジカル(・OH)の作用により、浮遊カビ菌などを除去することが可能となる。
【0087】
次に、上記のイオン発生装置を用いた電気機器の一例として空気清浄機の構成について説明する。
【0088】
図18は、図11〜図13に示すイオン発生装置を用いた空気清浄機の構成を概略的に示す斜視図である。また図19は、図18に示す空気清浄機にイオン発生装置を配置した様子を示す空気清浄機の分解図である。
【0089】
図18および図19を参照して、空気清浄機60は前面パネル61と本体62とを有している。本体62の後方上部には吹き出し口63が設けられており、この吹き出し口63からイオンを含む清浄な空気が室内に供給される。本体62の中心には空気取り入れ口64が形成されている。空気清浄機60の前面の空気取り入れ口64から取り込まれた空気が、図示しないフィルターを通過することで清浄化される。清浄化された空気は、ファン用ケーシング65を通じて、吹き出し口63から外部へ供給される。
【0090】
清浄化された空気の通過経路を形成するファン用ケーシング65の一部に、図11〜図13に示すイオン発生装置50が取り付けられている。イオン発生装置50は、そのイオン発生部となる孔44からイオンを上記の空気流に放出できるように配置されている。イオン発生装置50の配置の例として、空気の通過経路内であって、吹き出し口63に比較的近い位置P1、比較的遠い位置P2などの位置が考えられる。このようにイオン発生装置50のイオン発生部44に送風を通過させることにより、吹き出し口63から清浄な空気とともに外部にイオンを供給するイオン発生機能を空気清浄機60に持たせることが可能になる。
【0091】
本実施の形態の空気清浄機60によれば、イオン発生装置50で生じたイオンを送風部(空気の通過経路)により気流に乗せて送ることができるため、機外にイオンを放出することができる。
【0092】
なお本実施の形態においては電気機器の一例として空気清浄機について説明したが、本発明はこれに限定されるものではなく、電気機器は、これ以外に空気調和機(エアコンディショナー)、冷蔵機器、掃除機、加湿器、除湿機、電気ファンヒータなどであってもよく、イオンを気流に乗せて送るための送風部を有する電気機器であればよい。
【0093】
また上記においてイオン発生装置50に入力される電源(入力電源)は商用交流電源および直流電源のいずれであってもよい。入力電源が商用交流電源である場合、1次側回路である高圧トランス駆動回路30を構成する部品間やプリント基板のパターン間には法的距離をとる必要がある。また部品は電源電圧に対し耐圧確保できる部品が必要となり、大型化を招くが回路構成は簡素化でき、部品点数は少なくできる。一方、入力電源が直流電源である場合、1次側回路となる高圧トランス駆動回路30を構成する部品間やプリント基板のパターン間の距離は上記商用交流電源の場合と比べると大きく緩和され、近距離で配置でき、かつ部品自体もチップ部品などの小型品が採用でき、高密度配置が可能となるものの、高電圧駆動回路実現のための回路が複雑になり、部品点数が上記商用交流電源の場合と比べて多くなる。
【実施例】
【0094】
以下、本発明の実施例について図に基づいて説明する。
まず本願発明者は、2次巻線部の分割されたセクションの数(セクションの分割数)を変えたときの2次巻線の巻線容量と1次−2次の結合係数との変化を検討した。この検討にあたっては、次のような試作による測定を行なった。
【0095】
図20に示すような、1次巻線部51および2次巻線部52が分離壁55で分離され、かつ2次巻線部52が分離壁56によって複数のセクションに分割されたボビン59と、1次巻線部51に巻き付けられた1次巻線51aと、2次巻線部52の複数のセクションに巻き付けられた2次巻線52aとを有する巻線トランス60を用いた。1次巻線51aと2次巻線52aとの双方はともに同じ総巻数であって、2次巻線部52のみセクションの分割数を変化させた。
【0096】
測定では2次巻線52の総巻数を1200ターンとして、セクションの分割数を一方は2セクション(600ターン×2セクション:試作A)とし、もう一方は4セクション(300ターン×4セクション:試作B)として、結合係数および巻線容量を実測した。いずれもボビン59のサイズとして長さを15mm、幅を15mm、高さを18mmとした。
【0097】
上記の測定の結果、試作Bは試作Aに比較し、2次巻線部52のセクションの分割数が多くなり、2次巻線52aの端部が1次巻線51aから遠ざかったことに起因して結合係数は8%減少したものの、巻線容量は30%減少した。このことから、2次巻線52が同じ総巻数であっても、セクションの分割数を増やした方が巻線容量を減少できることを確認した。
【0098】
この結果とこの結果から推定してセクションの分割数2〜18の間でかつ総巻数1200ターン固定としたときのセクションの分割数に対する2次巻線容量および結合係数の関係を調べた。その結果を図21に示す。図21からセクションの分割数が増加するほど、容量が低下することがわかる。また同様にセクションの分割数が増加するほど結合係数が低下するが、その変化率は容量の低下の方が大きく、結合係数の低下は小さいことがわかる。
【0099】
また、セクションの分割数に対するトランスの全長と製造時間との関係についても調べた。その結果を図22に示す。図22の縦軸の数値は「トランス全長」の場合は長さとして10mm、20mm、・・・、100mmを示しており、「製造時間」の場合は比率として10、20、・・・、100を示している。図22から、トランスの全長は1セクションあたり2.5mmの長さが必要であることを前提としてセクションの分割数に対して比例的に増加することがわかる。また製造時間は1セクションのときを1としてセクションの分割数の増加に対する比率を記載した。巻線作業は通常自動化されているが、1つのセクションの巻線作業終了後、隣のセクションの巻線作業に移るには、一度巻線スピードを停止近くまで減速する必要があり、図1の分離壁26の切欠26aを通して、隣のセクションでの巻線作業に移る必要がある。したがってトランス全長と同様、製造時間もセクションの分割数に対して比例的に増加する。
【0100】
上記図21および図22の基礎実験を元に、容量としてはセクションの分割数が多いほうが望ましいが、結合係数やトランス全長、作業時間としてはセクションの分割数が少ないほうがよいため、セクションの分割数は5以上15以下とした。
【0101】
つまり、セクションの分割数が5より小さくなると巻線容量が急激に増加するためセクションの分割数は5以上にする必要がある。またセクションの分割数が15を超えると、トランス全長が55mmを超えてしまい小型なイオン発生装置にトランスを収容することが困難になるとともに、結合係数および製造時間も実用的なイオン発生装置に適さなくなることから、セクションの分割数は15以下にする必要がある。
【0102】
最終的な形状として長さが35mm、幅が6mm、高さが4mm(端子部を除く)の小型かつ薄型の巻線トランスで希望の出力電圧をえることができた。容積的には実験で用いたボビンサイズの約1/4に小型化できた。
【0103】
2次巻線を多数セクションに分割することで、元々実施している1セクションあたりの電圧は印加電圧/セクション数に低下し、絶縁的にもより改善された。さらにモールドなどを行なうとより高い絶縁性能を得ることができる。
【0104】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【産業上の利用可能性】
【0105】
本発明は、イオン発生電極にイオンを発生させるために電圧を昇圧して供給するイオン発生装置用トランス、イオン発生装置および電気機器に特に有利に適用され得る。
【図面の簡単な説明】
【0106】
【図1】本発明の一実施の形態におけるイオン発生装置用トランスの構成を概略的に示す平面図である。
【図2】図1に示すトランスの内部のコアを示す図である。
【図3】図2のトランスを矢印A方向から見た側面図である。
【図4】コアの構成を概略的に示す斜視図である。
【図5】棒状の端部にフランジ部を設けたコアの構成を概略的に示す斜視図である。
【図6】図5に示すコアを用いたトランスの構成を概略的に示す平面図である。
【図7】容量成分が巻線同士の間で発生する静電容量の集合であることを説明するための図であり、図1の領域R1の断面を示す図である。
【図8】巻線トランスの1次巻線と2次巻線とを示す回路図である。
【図9】巻線トランスの2次巻線を簡易的な等価回路で示す図である。
【図10】一例としてある回路定数の組合せにおける2次側の容量と出力電圧の関係をグラフ化した図である。
【図11】図1に示す高圧トランスを用いたイオン発生装置の構成を概略的に示す分解斜視図である。
【図12】図11に示したイオン発生装置において蓋体を除いた状態での概略平面図である。
【図13】図12のXIII−XIII線に沿う概略断面図である。
【図14】図11〜図13に示すイオン発生装置に用いられるイオン発生素子の構成を概略的に示す分解斜視図である。
【図15】図11〜図13に示すイオン発生装置に用いられるイオン発生素子の構成を概略的に示す平面図である。
【図16】図15のXVI−XVI線に沿う概略断面図である。
【図17】本発明の一実施の形態におけるイオン発生装置の機能ブロック図であり、各機能素子の電気的接続を示す図である。
【図18】図11〜図13に示すイオン発生装置を用いた空気清浄機の構成を概略的に示す斜視図である。
【図19】図18に示す空気清浄機にイオン発生装置を配置した様子を示す空気清浄機の分解図である。
【図20】2次巻線部のセクションの分割数を変えたときの2次巻線の巻線容量と1次−2次の結合係数との変化の検討に用いたトランスの構成を示す図である。
【図21】2次巻線部のセクションの分割数を変えたときの2次巻線の巻線容量と1次−2次の結合係数との変化の様子を示す図である。
【図22】2次巻線部のセクションの分割数を変えたときのトランスの全長と製造時間との変化の様子を示す図である。
【符号の説明】
【0107】
1 誘導電極、1a 天板部、1b 貫通孔、1c 屈曲部、1d 基板挿入部、1e 基板支持部、2 放電電極、3 支持基板、3a,3b 貫通孔、4 半田、5 高圧回路、10 イオン発生素子、20 高圧トランス(巻線トランス)、21 1次巻線部、21a 1次巻線、22 2次巻線部、22a 2次巻線、23a,23b,24a,24b 端子、25,26 分離壁、28a コア、28b フランジ部、29 ボビン、30 高圧トランス駆動回路、30a 素子、30b 電源入力コネクタ、31 基板、31a 貫通孔、32 リード線、40 外装ケース、40a 本体、40b 蓋体、40A イオン発生素子ブロック、40B 高圧トランスブロック、40C 高圧トランス駆動回路ブロック、41,42,43 壁、41a,41b 切欠部、44 イオン放出用の孔、50 イオン発生装置、60 空気清浄機、61 前面パネル、62 本体、63 吹き出し口、64 空気取り入れ口、65 ファン用ケーシング。
【出願人】 【識別番号】000005049
【氏名又は名称】シャープ株式会社
【出願日】 平成18年8月11日(2006.8.11)
【代理人】 【識別番号】100064746
【弁理士】
【氏名又は名称】深見 久郎

【識別番号】100085132
【弁理士】
【氏名又は名称】森田 俊雄

【識別番号】100083703
【弁理士】
【氏名又は名称】仲村 義平

【識別番号】100096781
【弁理士】
【氏名又は名称】堀井 豊

【識別番号】100098316
【弁理士】
【氏名又は名称】野田 久登

【識別番号】100109162
【弁理士】
【氏名又は名称】酒井 將行


【公開番号】 特開2008−47348(P2008−47348A)
【公開日】 平成20年2月28日(2008.2.28)
【出願番号】 特願2006−220056(P2006−220056)