Warning: copy(htaccessbak): failed to open stream: No such file or directory in /home/jtokkyo/public_html/header.php on line 10
熱交換器および密閉式冷却塔 - 特開2008−209070 | j-tokkyo
トップ :: F 機械工学 照明 加熱 武器 爆破 :: F28 熱交換一般

【発明の名称】 熱交換器および密閉式冷却塔
【発明者】 【氏名】田島 敦也

【氏名】河口 秀夫

【要約】 【課題】プレートフィンを大型化せず,少量の散布水で冷却水を適切に冷却できるとともに,空調負荷や外気温にかかわらず安定した制御が可能な熱交換器および密閉式冷却塔を提供すること。

【解決手段】本発明の熱交換器11のプレートフィン41は,散布水を受けて熱交換により循環液冷媒を冷却するものであって,直線状で互いに交差しない複数の畝状部43a,43bと,板面を貫通し,循環液冷媒またはその管を内部に通す複数の孔筒部42とが形成されている。さらに,プレートフィン41は銅製であり,複数の畝状部43a,43bのうち,孔筒部42により分断されない直通畝状部43aと,孔筒部42により分断されている分断畝状部43bとが交互に配置されている。
【特許請求の範囲】
【請求項1】
散布水を受けて熱交換により循環液冷媒を冷却するプレートフィンと,前記プレートフィンに循環液冷媒を密閉状態で流通させる液冷媒配管とを有する熱交換器において,前記プレートフィンは,
直線状で互いに交差しない複数の畝状部と,
板面を貫通し,循環液冷媒またはその管を内部に通す複数の孔筒部とが形成されていることを特徴とする熱交換器。
【請求項2】
請求項1に記載の熱交換器において,前記プレートフィンは,
前記複数の畝状部に,孔筒部により分断されない直通畝状部と,孔筒部により分断されている分断畝状部とがあり,
直通畝状部と分断畝状部とが交互に配置されており,
隣接する分断畝状部同士で孔筒部が互いにずれて配置されており,
銅製であり,
表面に親水性皮膜が形成されていることを特徴とする熱交換器。
【請求項3】
散布水を受けて熱交換により循環液冷媒を冷却するプレートフィンと,前記プレートフィンに循環液冷媒を密閉状態で流通させる液冷媒配管と,前記プレートフィンに水を散布するスプレーノズルと,前記プレートフィンに風を通させる通風機とを有する密閉式冷却塔において,前記プレートフィンは,
直線状で互いに交差せず,鉛直方向と交差する方向に形成された複数の畝状部と,
板面を貫通し,循環液冷媒またはその管を内部に通す複数の孔筒部とが形成されているものであることを特徴とする密閉式冷却塔。
【請求項4】
請求項3に記載の密閉式冷却塔において,前記プレートフィンは,
前記複数の畝状部に,孔筒部により分断されない直通畝状部と,孔筒部により分断されている分断畝状部とがあり,
直通畝状部と分断畝状部とが交互に配置されており,
隣接する分断畝状部同士で孔筒部が互いにずれて配置されており,
銅製であり,
表面に親水性皮膜が形成されていることを特徴とする密閉式冷却塔。
【請求項5】
請求項3または請求項4に記載の密閉式冷却塔において,
前記スプレーノズルは,前記プレートフィンに水を横から散布するものであり,
前記通風機は,前記プレートフィンに鉛直方向と交差する方向の風を通させるものであり,
前記スプレーノズルから前記プレートフィンに散布されて蒸発しなかった散布水を回収する排水部と,
前記排水部に回収された水を前記スプレーノズルへの給水に加えるエゼクタとを有することを特徴とする密閉式冷却塔。
【請求項6】
請求項3から請求項5までのいずれか1つに記載の密閉式冷却塔において,
前記プレートフィンから排出された循環液冷媒の温度を検知する温度センサと,
前記スプレーノズルからの水の散布量を,前記温度センサの検出温度が高いときには多くし,検出温度が低いときには少なくする温度制御部とを有することを特徴とする密閉式冷却塔。
【発明の詳細な説明】【技術分野】
【0001】
本発明は,循環使用する液冷媒を密閉した状態で冷却する密閉式冷却塔およびそれに用いられる熱交換器に関する。さらに詳細には,循環液冷媒との熱交換に使用される熱交換器のプレートフィン上で散布水を蒸発させることによって循環液冷媒を冷却する熱交換器および密閉式冷却塔に関するものである。
【背景技術】
【0002】
従来より,空調装置等に循環される冷却水を冷却するために,屋外に設置される冷却塔が用いられている。このような冷却塔として,冷却水を空気に接触させないように密閉して循環させる密閉式冷却塔がある。密閉式冷却塔としては従来より,熱交換器のプレートフィンに散布水を散布し,散布水と外気とを接触させて蒸発させるものがある(例えば,特許文献1参照。)。
【0003】
この文献の冷却塔によれば,散布水を霧状にして空気流に平行に散布することにより,プレートフィンに散布する散布水の量を必要最小限に抑えることができるとされている。また,散布水を循環させることなく常時新規のものを使用することで,冷却塔内での汚れの発生や散布水の水質悪化を防ぐことができ,冷却塔のメンテナンスや循環散布水の水処理の手間を低減できるとされている。さらに,散布水の下方への流下量によってその過不足を把握することにより散布量を調整して,蒸発に寄与しない余分な散布水量を削減できるとされている。
【特許文献1】特開2006−322669号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら,前記した従来の密閉式冷却塔では,プレートフィンの後方(散布水の散布箇所から遠い部分)まで,散布水を行き渡らせることは難しかった。空気流方向に散布された霧状の散布水が,冷却水の伝熱管上で凝集して大粒の液滴となり,重力によって落下してしまうからである。そして,プレートフィンの上方奥部分に,散布水の蒸発に寄与しない乾いた部分が残ってしまう。そのため,必要な冷却能力を得るためには,熱交換器を大型なものとする必要があった。
【0005】
さらに,本文献の制御方法では,熱交換器での散布水の過不足状況を示す諸情報等から最適な散布水量となるように制御されている。しかし,空気の状態の影響により,散布水の蒸発量は大きく変化する。例えば,空気の絶対湿度が低い場合には,冷却塔の必要冷却能力以上に散布水が蒸発してしまい,必要以上に水を消費してしまうという問題点があった。
【0006】
本発明は,前記した従来の熱交換器および密閉式冷却塔が有する問題点を解決するためになされたものである。すなわちその課題とするところは,プレートフィンを大型化せず,少量の散布水で冷却水を適切に冷却できるとともに,空調負荷や外気温にかかわらず散布水量を必要最小量に制御することが可能な熱交換器および密閉式冷却塔を提供することにある。
【課題を解決するための手段】
【0007】
この課題の解決を目的としてなされた本発明の熱交換器は,散布水を受けて熱交換により循環液冷媒を冷却するプレートフィンと,プレートフィンに循環液冷媒を密閉状態で流通させる液冷媒配管とを有する熱交換器であって,直線状で互いに交差しない複数の畝状部と,板面を貫通し,循環液冷媒またはその管を内部に通す複数の孔筒部とが形成されているものである。
【0008】
本発明の熱交換器によれば,板面を貫通する孔筒部が形成されているので,その内部を通る循環液冷媒またはその伝熱管との間で熱交換され,循環液冷媒を冷却することができる。また,板面に散布水を受けることにより,プレートフィン自身が冷却される。ここで,プレートフィンに畝状部が形成されているので,板面あるいは孔筒部に受けた散布水が凝集して液粒となり重力によって落下したとしても,畝状部に載ることによって容易には落下しない。また,複数の畝状部を有するので,液粒の量が多くて1つの畝状部で捕集しきれず溢れた場合でも,鉛直下方に隣接する他の畝状部によって捕集される。従って,プレートフィンを大型化せず,少量の散布水で冷却水を適切に冷却できる熱交換器となっている。
【0009】
さらに本発明では,プレートフィンが,複数の畝状部に,孔筒部により分断されない直通畝状部と,孔筒部により分断されている分断畝状部とがあることが望ましい。このようになっていれば,直通畝状部に載った散布水は,孔筒部に遮られることなくプレートフィン表面を広がる。また,分断畝状部に載った散布水は,効率よく孔筒部を冷却する。
さらに,直通畝状部と分断畝状部とが交互に配置されていることが望ましい。このようになっていれば,プレートフィンの全体を効率よく使用できる。
さらに,隣接する分断畝状部同士で孔筒部が互いにずれて配置されていることが望ましい。このようにすれば,プレートフィンの面を効率よく使用して孔筒部を配置することができる。
さらに,プレートフィンは銅製であることが望ましい。銅製であれば,熱伝導性と耐腐食性に優れたものとできる。
さらに,表面に親水性皮膜が形成されていることが望ましい。このようになっていれば,液粒の表面張力が低下し,プレートフィンの表面に薄い液膜となって広がりやすい。従って,プレートフィン全体の濡れ性が向上するとともに,蒸発せずに落下する散布水の割合を小さくすることができる。
さらに,複数のプレートフィンが互いに平行に配置されており,プレートフィンの畝状部の底部からの高さが,プレートフィン間の距離の2分の1より大きいことが望ましい。このようになっていれば,プレートフィン間の空間部分が狭いので,プレートフィンを濡らすことなく落下する水滴の量を減らすことができる。
【0010】
また本発明は,散布水を受けて熱交換により循環液冷媒を冷却するプレートフィンと,プレートフィンに循環液冷媒を密閉状態で流通させる液冷媒配管と,プレートフィンに水を散布するスプレーノズルと,プレートフィンに風を通させる通風機とを有する密閉式冷却塔であって,プレートフィンが,直線状で互いに交差せず,鉛直方向と交差する方向に形成された複数の畝状部と,板面を貫通し,循環液冷媒またはその管を内部に通す複数の孔筒部とが形成されているものである密閉式冷却塔にも及ぶ。
本発明の密閉式冷却塔によれば,通風機を有するので,畝状部に乗った液粒は,空気流に押されながらプレートフィン上に沿って薄い液膜となって広がる。これにより,液粒はプレートフィン後方まで誘導され,プレートフィン全体をまんべんなく濡らすことができる。
【0011】
さらに本発明の密閉式冷却塔では,プレートフィンが複数の畝状部に,孔筒部により分断されない直通畝状部と,孔筒部により分断されている分断畝状部とがあることが望ましい。さらに,直通畝状部と分断畝状部とが交互に配置されていることが望ましい。さらに,隣接する分断畝状部同士で孔筒部が互いにずれて配置されていることが望ましい。さらに,銅製であることが望ましい。さらに,表面に親水性皮膜が形成されていることが望ましい。さらに,複数のプレートフィンが互いに平行に配置されており,プレートフィンの畝状部の底部からの高さが,プレートフィン間の距離の2分の1より大きいことが望ましい。
【0012】
さらに本発明では,スプレーノズルが,プレートフィンに水を横から散布するものであることが望ましい。このようにすれば,プレートフィンの広い面積を有効に熱交換に使用できる。
さらに,通風機が,プレートフィンに鉛直方向と交差する方向の風を通させるものであることが望ましい。このようにすれば,スプレーノズルから散水された水をプレートフィンの広い面積中に拡げることができる。
さらに,スプレーノズルからプレートフィンに散布されて蒸発しなかった散布水を回収する排水部と,排水部に回収された水をスプレーノズルへの給水に加えるエゼクタとを有することが望ましい。このようにすれば,動力を使用することなく,排水を再利用することができ,散布水の量を大幅に削減できる。
【0013】
さらに本発明では,プレートフィンから排出された循環液冷媒の温度を検知する温度センサと,スプレーノズルからの水の散布量を,温度センサの検出温度が高いときには多くし,検出温度が低いときには少なくする温度制御部とを有することが望ましい。
このようなものであれば,循環液冷媒の温度を適切に保持することができるとともに,プレートフィンにおける熱交換の必要能力に対応して,スプレーノズルからの水の散布量を選択することができる。従って,空調負荷や外気温にかかわらず安定した散布水の量の制御が可能となり,散布水量を必要最小量とすることができる。
【発明の効果】
【0014】
本発明の熱交換器および密閉式冷却塔によれば,プレートフィンを大型化せず,少量の散布水で冷却水を適切に冷却できるとともに,空調負荷に応じて安定した運転が可能である。
【発明を実施するための最良の形態】
【0015】
以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,プレートフィン熱交換器を用いた密閉式冷却塔に本発明を適用したものである。
【0016】
本形態に係る密閉式冷却塔1は,図1に示すように,熱交換器11,スプレーノズル12,ファン13が設けられている。中央部上方にファン13が設けられ,その下方の図中左右にそれぞれ熱交換器11が設けられている。ファン13の下部は空間となっている。スプレーノズル12は,熱交換器11の外側のみに設けられている。
【0017】
スプレーノズル12から熱交換器11へ,内側へ向けて散布水が散布される。また,ファン13は,図中下から上向きに排気を行う。これにより,図中に白抜き矢印で示すように,熱交換器11の外周に設けられた通風口14から,熱交換器11の内部を通り,ファン13を介して外部へ向かう空気流が生成される。また,熱交換器11とファン13との間には,エリミネータ15が設けられ,水滴がファン13へ飛散することが防止されている。
【0018】
さらに,図1中下部に示すように,冷却水用の流入配管21,流出配管22と,散布水用の給水配管23,排水配管24とが形成されている。冷却水は,空調設備等に循環されて使用されるものである。この密閉式冷却塔1では,冷却水はその配管内に密閉され,熱交換器11を通過する。冷却水が外気と接触することはない。そして,熱交換器11において配管越しに熱交換を受けて,冷やされる。本形態では,冷却水用の流出配管22に,温度計25が設けられている。
【0019】
一方,散布水は,散布水用の給水配管23を介して外部から供給されて,スプレーノズル12から熱交換器11に向けて散布される。そのうちの多くは熱交換器11において蒸発する。蒸発しなかった部分は,水受け26に集められ,散布水用の排水配管24を介して排出される。
【0020】
また,散布水用の給水配管23には,給水ポンプ27,水エゼクタ28,圧力計29が設けられている。給水ポンプ27は,給水配管23から給水される散布水用の水を昇圧するためのものである。水エゼクタ28は,その内部の絞り部を水が通過することによって発生する負圧を利用して,第3の配管からの流体を吸引するものである。ここでは,図中左側の入口から散布水が入力され,図中右側の出口へと流出する際に,図中下側の第3の配管である余剰水配管30からの余剰水を吸引して回収する。なお,余剰水配管30は,逆止弁31と開閉弁32とを介して排水配管24と連通されている。また,排水配管24には,排水を液封するためのU字状配管33が設けられ,このU字状配管33には水位計34が設けられている。
【0021】
さらに,この密閉式冷却塔1の全体の制御を司る制御部35が設けられている。制御部35は,温度計25の測定結果から流出される冷却水の温度を得る。また,圧力計29の測定結果から,スプレーノズル12に供給される散布水の圧力を得る。また,水位計34の測定結果から,散布水の排水量を得る。そして,開閉弁32の開閉を制御するとともに,散布水の供給量やファン13の回転速度を調整し,散布動作させるスプレーノズル12を選択する。
【0022】
次に,熱交換器11について説明する。熱交換器11には,図2に示すようなプレートフィン41が複数枚,互いにほぼ平行に配置されている。図1に見えているのは,最も手前の1枚であり,その奥側に同じものが等間隔に設けられている。各プレートフィン41には,冷却水用の配管を通すための孔筒部42が多数形成されている。この孔筒部42は,図3に示すように,所定の長さの筒状部材であり,その一端がプレートフィン41に固定されている。孔筒部42の内部は貫通孔となっている。
【0023】
また,このプレートフィン41には,図2に示すように,水平方向(図1中横方向)に互いに平行な複数の畝状部43a,43bが形成されている。そのため,プレートフィン41は,その一部を図3に示すように,全体に波板状になっている。これらの畝状部43には,孔筒部42によって分断されていない直通畝状部43aと,孔筒部42によって所々分断されている分断畝状部43bとがある。そして,この直通畝状部43aと分断畝状部43bとが,交互に配置されている。また,隣接する分断畝状部43bに形成されている孔筒部42は,互いにずれた位置に配置されている。
【0024】
また,本形態の密閉式冷却塔1の熱交換器11では,複数のプレートフィン41が所定の間隔をあけて平行に重ね合わせられている。その状態を図1中横方向から見ると,図4に示すように,各プレートフィン41の畝状部43a,43bがそれぞれ同じ箇所で重なりあう配置となる。そのため,各プレートフィン41の畝状部43a,43b同士が互いに接触することはない。また,各プレートフィン41の孔筒部42は互いに隣接され,それらの貫通孔は直線状に連続した配置となる。
【0025】
さらに本形態では,図4に示すように,熱交換器11の複数のプレートフィン41では,各プレートフィン41の各畝状部43a,43bの底部からの高さwは,プレートフィン41間の間隔dの2分の1より大きくされている。間隔dより大きくしても良い。また,この高さwは,1枚のプレートフィン41中の各畝状部43a,43bで場所により異なるものであっても良い。例えば,下方に配置される畝状部43a,43bの高さwは,上方に配置されるものの高さwより大きいものとしてもよい。ただし,すべてのプレートフィン41が,その全体の形状は同じものであることが望ましい。
【0026】
そして,熱交換器11では,冷却水用の流入配管21から分岐された複数の配管が,重ねられたプレートフィン41の各孔筒部42をまとめて貫通している。一般には,冷却水用の配管は,プレートフィン41の重なりを複数回往復して貫通する。そして,冷却水は,各孔筒部42でプレートフィン41と熱交換して冷やされる。そして,再び集められた冷却水は,流出配管22を介して流出される。なお,プレートフィン41を重ね合わせたとき,孔筒部42同士は接触していても良い。
【0027】
さらに,本形態では,プレートフィン41は,銅板で形成されている。銅は,熱伝導性に優れているとともに,アルミと異なり金属溶出が起こりにくい。アルミはイオン化傾向が高く,水蒸気とゆっくり反応する。そのため表面を酸化膜等で覆う表面処理の必要があった。これに対し,銅は水蒸気と反応しないのでそのまま用いることができる。従って,アルミを使用したプレートフィンに比較して,熱交換の効率が上昇するとともに,耐腐食性に優れている。さらに,表面の濡れ性を向上させるために,プレートフィン41の表面に親水性処理を施してもよい。例えば,酸化銅の被膜を形成するとしてもよい。
【0028】
次に,本形態の密閉式冷却塔1における冷却水の冷却方法について説明する。冷却水は,流入配管21から流入される。そして,冷却水は,熱交換器11において,その配管を通って,プレートフィン41の複数箇所の孔筒部42を順に貫通する。そして,配管と孔筒部42とを介して,冷却水とプレートフィン41とが熱交換される。
【0029】
一方,熱交換器11のプレートフィン41には,スプレーノズル12によって散布水が散布されて冷やされている。散布水は,給水配管23から給水され,スプレーノズル12によって,図1中横方向から熱交換器11に噴霧されてプレートフィン41の表面に付着する。このとき,散布水はできるだけ細かい水滴のミスト状に噴霧することが望ましい。また,プレートフィン41の表面に親水性処理が施されていれば,さらに良好に付着する。付着した散布水は,プレートフィン41の表面において蒸発し,プレートフィン41から熱を奪う。これにより,プレートフィン41は冷やされる。
【0030】
また,密閉式冷却塔1では,図1に示すように,ファン13によって空気の流れが形成されている。プレートフィン41の内部では,この空気流はほぼ水平方向になっている。そして,プレートフィン41の表面に付着した散布水は,この空気流によって蒸発が促進される。このとき,プレートフィン41に水平方向に畝状部43a,43bが形成されているので,散布水がその畝状部43a,43bの斜面に載った状態となり,すぐには落ちにくい。そして,水平方向の空気流によって,散布水の多くが畝状部43a,43bに沿って水平方向に運ばれる。さらに,各畝状部43a,43bの高さwがプレートフィン41間の間隔dの2分の1より大きくされているので,1つのプレートフィン41から落下した水滴が,隣り合うプレートフィン41の畝状部43a,43bに載りやすい。従って,散布水の多くがプレートフィン41の最奥部まで到達することができる。
【0031】
その結果,プレートフィン41を広く使って熱を奪うので,プレートフィン41は良く冷やされる。従って,効率よく冷却水を冷却することができる。また,図中上下の段の孔筒部42が互い違いに配置されるとともに,隣接する孔筒部42同士の間にも分断畝状部43bが形成されている。そのため,空気流によって運ばれる散布水は,孔筒部42同士の間をジグザグに進むこともできる。これにより,デッドスペースとなりがちであった水平方向に並ぶ孔筒部42同士の間にも,散布水を行き渡らせることができる。従って,さらに効率よく,プレートフィン41が冷やされる。
【0032】
散布された散布水の多くは,プレートフィン41の表面で蒸発する。しかし,蒸発しなかった水は重力によって下方へ落下し,水受け26に溜まる。この溜まった余剰水は,排水配管24から排出される。このとき,余剰水は排水配管24に設置されたU字状配管33に貯留され,水位計34によってその貯留量が検出される。検出された貯留量が所定量以上である場合,開閉弁32を開放して,余剰水を水エゼクタ28へと流通させる。水エゼクタ28は,動力を使用しないものである。そして,給水配管23から供給される散布水の流速による負圧のみによって,余剰水をある程度回収することができる。従って,余分なエネルギーを使用せず,散布水の消費量を減らすことができる。
【0033】
さらに,制御部35では,温度計25の検出結果から出力される冷却水の温度を得ることができる。そして,この結果に基づいて,密閉式冷却塔1の稼働させるスプレーノズル12の数や給水圧力等を制御することにより,熱交換器11への散布水量を制御する。例えば,図5に示すように,出力される冷却水の温度が32℃を下回ったら,スプレーノズル12の一部からの水散布を停止させる。冷却水の出口温度がさらに下がって所定の温度以下となったら,すべてのスプレーノズル12を停止させる。外気温が比較的低く,空調負荷が小さい場合では,ファン13による空気の流れを利用した空冷のみで十分だからである。一方,冷却水の出口温度が32℃より高いときには,全部のスプレーノズル12から散布させる。また温度によってはさらに,給水ポンプ27の給水圧を上げるなどして,各スプレーノズル12の散布水量を多くしてもよい。
【0034】
このように制御することで,図6に示すように,従来の冷却塔に比較して,過剰となる散布水の量を抑制することができる。図中,細線Tは,そのときの冷却塔の空調負荷に対して想定される外気温度を示し,対応する縦軸は右側である。また,太線Pは,本実施例での散布水の過剰使用量を示す。破線Qは,従来の散布水を循環して使用する散水方式の冷却塔(開放式または密閉式)での散布水の排水量を示す。太線Pと破線Qに対応する縦軸は左側である。
【0035】
従来の冷却塔では,外気温や空調負荷等に関わらず,循環される散布水のうち,常時一定量を排水するように制御されていた。例えば,図6に破線Qで示す例では,散布水の排水量は常に0.47[L/(h・kW)]とされており,これは循環する散布水の一部を入れ替えるためのブローダウンの量であるので,一定量となる。
【0036】
これに対し本実施例では,冷却水の出口温度に応じて,その時の散布水の量が制御部35によって制御されている。そのため,散布水の排水量も一定ではない。本実施例では,冷却塔の空調負荷が約30%程度以下の場合は,散布水無しでの空冷のみとすることが出来る。この空調負荷30%程度は,外気温度が20℃程度の場合に相当するものであり,この程度の温度であれば,空冷のみでも,冷却水の出口温度を32℃以下とすることができるからである。従って,この範囲内では散布水の使用量は0であり,当然排水量も0[L/(h・kW)]となっている。
【0037】
また本実施例では,外気温度が20℃を超える程度となると,空冷のみでは冷却水の出口温度を32℃以下とすることができない場合が多い。そこで,外気温度の上昇に伴い,散布水の使用量も増加させることとなる。そして,散布水の蒸発量も増えるものの,一般には過剰量も増える。そして,空調負荷が最大の100%となるのは,外気温が約35℃以上の場合である。この状態での散布水の排水量は約0.74[L/(h・kW)]となった。
【0038】
年間を通しての散布水の平均の排水量を比較するには,外気温22℃程度で空調負荷40%程度の状態で比較すると良い。図6に示す例では,このとき,太線Pで示す本実施例での散布水の排水量は約0.09[L/(h・kW)]であった。一方,破線Qで示す従来例の散布水の排水量は常に0.47[L/(h・kW)]である。すなわち,本実施例での散布水の排水量は,従来例の約20%程度まで抑制されている。このことから,本実施例の制御方法によれば,空調負荷に応じた適切な冷却能力を有するとともに,年間を通した散布水の排水量を抑えることができる。
【0039】
また,本形態の密閉式冷却塔1を特許文献1に記載されている冷却塔と比較すると,例えば,本形態では材質や構造に工夫を施したプレートフィン41を使用しているので,プレートフィン41における蒸発性能が高い。よって,より少ない散布水量でも同じ程度の蒸発量が確保されるため,排水量をより少なくすることができる。また,本形態では,冷却水の出口温度を検出して散布水量を制御しているので,空調負荷や外気温度に影響されることなく,常に必要最小量の散布水を供給することができる。従って,本形態の密閉式冷却塔1は,特許文献1に記載されているものよりさらに,排水量を抑えることのできる冷却塔となっている。
【0040】
以上詳細に説明したように,本形態の密閉式冷却塔1によれば,プレートフィン41に畝状部43a,43bが設けられているので,散布水はすぐには落ちずに空気流によって奥の方まで運ばれる。従って,プレートフィンを大型化することなく,多くの散布水を蒸発させることができるので,効率よく冷却される。さらに,プレートフィン41が銅板で形成されているので,熱交換効率が良く,耐腐食性に優れている。また,水エゼクタ28を有しているので,動力を使用することなく,余剰となった散布水を回収することができる。さらに,本形態の密閉式冷却塔1では,その冷却能力を冷却水の出力温度に基づいて制御している。従って,空調負荷に応じて必要とされる冷却能力が選択される。また,外気温に左右されることなく安定した制御が可能となっている。これらのことから,散布水の使用量を抑制した密閉式冷却塔1となっている。
【0041】
なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,上記の形態ではプレートフィン41として,複数の畝状部43a,43bが形成されているものとした。これに対し,例えば,図7,図8,図9に示すプレートフィン51のように,直通畝状部43aを谷状部52としてもよい。あるいは,分断畝状部43bを谷状としても良いし,すべての畝状部43a,43bを谷状とすることもできる。いずれの場合でも,重ね合わされるプレートフィンは,すべて同様の形状とすることが望ましい。
また例えば,ファン13によって内部から空気を吸い出すとしているが,下方または外周側から空気を吹き込むようにすることもできる。
【0042】
さらに,本発明の熱交換器は,密閉式冷却塔に限定されることなく,空気と循環冷媒との熱交換を行うものであればどのようなものにも適用可能である。例えば,エンジン排熱を冷却水を介して外気に放熱するような空冷によるラジエタを,本発明のようなプレートフィン熱交換器に置き換えて,水冷方式とすることができる。これにより,従来よりもコンパクトで安価な熱交換器とすることができる。また例えば,エアコンのようなフロン冷媒を用いた冷凍サイクルでは,空調室内機で蒸発したガス状のフロン冷媒を,ガスコンプレッサにて空調室外機に搬送し,この内部にある空冷熱交換器にてフロンガスが空気との熱交換により冷却され,液体のフロンに相変化する。この空冷熱交換器を本発明のような水冷のプレートフィン熱交換器することも可能である。これにより,フロンガスの空調室外機における凝縮圧力を空冷の場合よりも通常低下させることができ,ガスコンプレッサの必要動力を低減できる。
【図面の簡単な説明】
【0043】
【図1】本形態に係る密閉式冷却塔の概略構成を示す断面図である。
【図2】プレートフィンを示す平面図である。
【図3】プレートフィンを示す断面斜視図である。
【図4】プレートフィンが重ねられた状態を示す側面図である。
【図5】密閉式冷却塔の冷却水温度と給水量との関係を示す説明図である。
【図6】密閉式冷却塔による冷却負荷と水使用量との関係を示すグラフ図である。
【図7】プレートフィンの別の例を示す平面図である。
【図8】プレートフィンの別の例を示す断面斜視図である。
【図9】プレートフィンの別の例が重ねられた状態を示す側面図である。
【符号の説明】
【0044】
1 密閉式冷却塔
11 熱交換器
12 スプレーノズル
13 ファン
21 流入配管
22 流出配管
25 温度計
26 水受け
28 水エゼクタ
35 制御部
41 プレートフィン
42 孔筒部
43a 直通畝状部
43b 分断畝状部
【出願人】 【識別番号】000221834
【氏名又は名称】東邦瓦斯株式会社
【出願日】 平成19年2月27日(2007.2.27)
【代理人】 【識別番号】110000291
【氏名又は名称】特許業務法人コスモス特許事務所


【公開番号】 特開2008−209070(P2008−209070A)
【公開日】 平成20年9月11日(2008.9.11)
【出願番号】 特願2007−46727(P2007−46727)