トップ :: C 化学 冶金 :: C12 生化学;ビ−ル;酒精;ぶどう酒;酢;微生物学;酵素学;突然変異または遺伝子工学

【発明の名称】 ラボオンチップ
【発明者】 【氏名】鶴見 亮太

【氏名】塩谷 俊人

【要約】 【課題】核酸の複製や合成、反応及び検出等を行う流路部と、流路部における反応を制御する回路部を一つのチップ上に設け、全ての機能が一つの基板上に設けられたラボオンチップの提供。

【構成】第1の電極9を具備する核酸調製部3と、該核酸調製部に試料流体を流入するための試料流入部1と、該核酸調製部と流路によって連通した第2の電極8を具備する反応部5と、該反応部に薬液を流入するための薬液流入部7と、該反応部から流体を流出させる流出部と、前記第一及び第2の電極と接続した制御回路30と、前記第2の電極と接続した検出回路40とを、一つの基板100上に具備するラボオンチップ。
【特許請求の範囲】
【請求項1】
核酸の複製反応、プローブ核酸の合成及び/又は固定化、及び、ハイブリダイゼーション反応を行う流路部と、該流路部に備えられた電極を制御するための回路部とを一つの基板上に具備するラボオンチップ。
【請求項2】
前記流路部が、第1の電極を具備する核酸調製部と、該核酸調製部に試料流体を流入するための試料流入部と、該核酸調製部と流路によって連通した第2の電極を具備する反応部と、該反応部に薬液を流入するための薬液流入部と、該反応部から流体を流出させる流出部とを具備する、請求項1に記載のラボオンチップ。
【請求項3】
前記回路部が、前記第1及び第2の電極と接続した制御回路と、前記第2の電極と接続した検出回路を具備する、請求項1又は2に記載のラボオンチップ。
【発明の詳細な説明】【技術分野】
【0001】
本発明は、DNA等の微量物質の複製、反応及び検出等の操作を一つのチップ上で行うラボオンチップに関し、より詳細には、反応部の電極を制御する回路を一体として備えるラボオンチップに関する。
【背景技術】
【0002】
近年、ラボオンチップ、集積化マイクロチップ、μ-TAS等と称するチップ上で各種の混合、反応、分離精製、検出を行うチップが実用化され始めている。このラボオンチップの利点は、サンプルが少量ですむことから、血液を採取するときの患者のストレスを低減できること、試薬にかかるコストを抑えられることなどにある。また、反応液が少量であるために反応が速く進み、検出結果が出るまでの時間も短縮できるとされている。
【0003】
これまでのラボオンチップは、ガラスやプラスチック基板上に流路等の反応部を集積したものであり(例えば特許文献1)、それを制御する回路と組み合わせて使用するものであった。
【特許文献1】特開2002−296234号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明では、核酸の複製や合成、反応及び検出のための流路と共に、その反応を制御する回路をチップ上に設け、全ての機能が一つの基板上に設けられたチップを提供することを目的とする。
【課題を解決するための手段】
【0005】
本願発明によれば、第1の電極を具備する核酸調製部と、該核酸調製部に試料流体を流入するための試料流入部と、該核酸調製部と流路によって連通した第2の電極を具備する反応部と、該反応部に薬液を流入するための薬液流入部と、該反応部から流体を流出させる流出部と、前記第一及び第2の電極と接続した制御回路と、前記第2の電極と接続した検出回路とを、一つの基板上に具備するラボオンチップが提供される。
【発明の効果】
【0006】
試料の反応等を行う流路と制御回路を一つの基板上に設けることにより、チップの製造を簡便且つ迅速にすることが可能である。
【発明を実施するための最良の形態】
【0007】
図1に、本発明のラボオンチップの概念図を示す。本発明のラボオンチップは、基板100上に流路部10及び回路部20を備える。ここで、基板100は、ガラス、プラスチック、シリコン等から構成されてよいが、特にシリコンが好ましい。
【0008】
流路部10は、第1の電極9を具備する核酸調製部3と、該核酸調製部3に試料流体を流入するための試料流入部1と、該核酸調製部3と流路によって連通した第2の電極8を具備する反応部5と、該反応部5に薬液を流入するための薬液流入部7と、該反応部から流体を流出させる流路とを具備する。
【0009】
核酸調製部3は、試料核酸をPCR法によって増幅するためのスペースであり、任意の形状であってよい。核酸は、DNA又はRNAであってよいが、DNAが好ましい。核酸調製部3は、その内部の好ましくは底面に第1の電極9を具備する。この第1の電極9は、後述する制御回路30に接続されており、電流又は電圧が印加されて加熱され、或いは、逆印加されて冷却される。これによって、核酸調製部3内部の溶液の温度が加熱又は冷却され、試料核酸の増幅が実施される。
【0010】
核酸調製部3には、血液や毛根、口腔粘膜等の検体から抽出した核酸抽出液を注入するための試料流入部1が設けられる。試料流入部1は、核酸調製部3の上面に垂直に設けられた貫通孔であってもよいが、流路によって核酸調製部3と連通した貯留槽として構成されてもよい。この場合、試料流入部1に蓄えられた核酸抽出液は流路を通って核酸調製部3に注入される。核酸増幅反応に必要な試薬は、核酸調製部3に貫通孔を設けて直接注入してもよく、或いは試料流入部を介して注入してもよい。
【0011】
さらに、試料流入部1に検体から核酸試料を抽出する機能を具備させてもよい。核酸抽出の機能を包含することにより、本発明のラボオンチップ上で核酸抽出から検出までの反応を行うことができる。
【0012】
反応部5は、試料核酸とプローブ核酸とのハイブリダイゼーションを行うためのスペースであり、任意の形状であってよい。この反応部5は、その内部の好ましくは底面に第2の電極8を具備する。この第2の電極8は、後述する制御回路30に接続されており、電流又は電圧が印加されることができる。
【0013】
この反応部5では、まず核酸プローブの合成及び固定化を行う。反応部5には、核酸プローブ合成用の塩基等を含有する合成液を注入するための合成液流入部7が設けられる。合成液流入部7は、反応部5の上面に垂直に設けられた貫通孔であってもよいが、流路によって反応部5と連通した貯留槽として構成されてもよい。この場合、合成液流入部7に蓄えられた合成液は流路を通って反応部5に注入される。
【0014】
核酸プローブの合成及び固定化は、当該分野で周知の方法を用いて行えばよく、例えば第2の電極8に電流を印加することによって電極上で直接核酸プローブを合成してもよい。また、インクジェット法等により電極上に核酸プローブを固定化してもよい。ここで、合成反応に用いた液は、流路を通って排出される。任意に廃液を溜める廃液槽をチップ上に備えてもよい。
【0015】
反応部5内の電極に核酸プローブが合成及び/又は固定化された後、核酸調製部3で複製された試料核酸が流路を通って反応部5に流入される。ここで、核酸プローブと試料核酸とのハイブリダイゼーション反応が行われる。ハイブリダイゼーション反応に必要な薬液は、反応部5の上面に垂直に設けられた貫通孔から注入してもよく、また或いは、合成液流入部7から注入してもよい。
【0016】
ハイブリダイゼーション反応によって生成した二本鎖核酸は、二本鎖核酸と特異的に結合するインターカレータ等の電気化学的応答性を有する化合物を結合させる。これによって生じた電流を第2の電極8に接続された電圧電流検出回路40によって検出し、二本鎖核酸の存在の有無を測定する。
【0017】
以上に記載した種々の流体の移動は、ポンプ等の手段を用いて行ってもよく、また、流路の何れかの位置から過圧・減圧をすることによって行ってもよい。
【0018】
次に、回路部20を説明する。回路部20は、制御回路30と、検出回路40とを具備する。制御回路30は、第1の電極及び第2の電極と接続している。制御回路30は、これらの電極に電流又は電圧を印加・逆印加する回路である。その一つの機能として、第1の電極9に電流又は電圧を印加して電極を加熱する。また、電流又は電圧を逆印加して電極を冷却する。このように、電極を加熱・冷却することにより、核酸調製部3内の溶液の温度を制御し、核酸の調製反応、例えばPCRを進行させることができる。
【0019】
制御回路30はさらに、第2の電極8に電流又は電圧を印加して、該電極上で核酸プローブの合成を行う。また、ハイブリダイゼーション反応を行う際に、第2の電極8に電流又は電圧を印加・逆印加して反応部5内の溶液の温度を制御し、反応を促進させてもよい。
【0020】
次に、制御回路30の実施形態の例を示す。図2に示す第1の実施形態では、制御回路30は、第1の電極9に電流を印加するための第1のカレントミラー回路(Source機能)、第1の電極9に電流を逆印加するための第2のカレントミラー回路(Sink機能)、及び第2の電極8に電流を印加するための第3のカレントミラー回路(Source機能)から構成される。この第1の実施形態では、それぞれのカレントミラー回路に個々に信号となる電流を入力することによって、電極に電流を印加・逆印加することができる。
【0021】
図3に示す第2の実施形態は、上記第1の実施形態と同じ3つのカレントミラー回路から構成されることができる。この第2の実施形態では、制御信号をインバータ回路に入力し反転信号を生成する。制御信号によって3つのカレントミラー回路のうちの1つに電流が入力され、入力されたカレントミラー回路からのみ電流が出力される。
【0022】
図4に示す第3の実施形態では、制御回路30は、第1の電極9に直接プラス電圧を印加して電極を加熱し、或いはマイナス電圧を印加して電極を冷却することができる。第2の電極も同様に電圧を印加され、これによって電極上で核酸プローブが合成される。
【0023】
図5に示す第4の実施形態では、制御信号Aをインバータ回路に入力し反転信号を生成し、これによって、第1の電極と第2の電極の何れかに電圧が印加される。さらに、制御信号Bをインバータ回路に入力し反転信号を生成し、これによって、第1の電極にプラス電圧が印加されるか又はマイナス電圧が印加される。
【0024】
次に、検出回路40について説明する。検出回路40は積分回路であり、第2の電極8と接続されている。検出回路40は、第2の電極8を介して、反応部5内の溶液中の電流値を検出し、電流値又は電圧値を出力する。図6に、検出回路40の一つの実施形態を示した。制御信号Aが入力されて、検出された電流値がそのまま出力される。制御信号をインバータ回路に入力し反転信号を生成すると、検出された電流値が積分回路に入力され、制御信号Bを入力することで電流が電圧に変化されて出力される。
【0025】
検出回路40から出力された値を読み取り、ハイブリダイゼーション反応によって二本鎖が生じたか否かを決定する、即ち、試料核酸中に、所望の核酸配列が存在したか否かを決定することができる。
【0026】
以上説明したように、本発明に従って、核酸の複製、合成、反応、検出等を一つのチップ上で行う際の制御回路をチップ上に形成することにより、ラボオンチップの製造を簡便且つ迅速にすることができる。
【図面の簡単な説明】
【0027】
【図1】本発明のラボオンチップの概念図を示す。
【図2】制御回路の一実施形態を示す。
【図3】制御回路の一実施形態を示す。
【図4】制御回路の一実施形態を示す。
【図5】制御回路の一実施形態を示す。
【図6】検出回路の一実施形態を示す。
【符号の説明】
【0028】
1…試料流入部、3…核酸調製部、5…反応部、7…薬液流入部、8…第2の電極、9…第1の電極、10…流路部、20…回路部、30…制御回路、40…検出回路、100…基板。
【出願人】 【識別番号】000003193
【氏名又は名称】凸版印刷株式会社
【出願日】 平成18年7月13日(2006.7.13)
【代理人】 【識別番号】100058479
【弁理士】
【氏名又は名称】鈴江 武彦

【識別番号】100091351
【弁理士】
【氏名又は名称】河野 哲

【識別番号】100088683
【弁理士】
【氏名又は名称】中村 誠

【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊

【識別番号】100075672
【弁理士】
【氏名又は名称】峰 隆司

【識別番号】100109830
【弁理士】
【氏名又は名称】福原 淑弘

【識別番号】100084618
【弁理士】
【氏名又は名称】村松 貞男

【識別番号】100092196
【弁理士】
【氏名又は名称】橋本 良郎


【公開番号】 特開2008−17779(P2008−17779A)
【公開日】 平成20年1月31日(2008.1.31)
【出願番号】 特願2006−193076(P2006−193076)