トップ :: C 化学 冶金 :: C10 石油,ガスまたはコ−クス工業;一酸化炭素を含有する工業ガス;燃料;潤滑剤;でい炭

【発明の名称】 重質軽油から高品質留出油を生産するための新しい水素化分解法
【発明者】 【氏名】ムクヘルジー、ウッジャル、ケイ.

【氏名】ルイ、ワイ、スン、ダブリュー.

【氏名】ダールバーグ、アーサー、ジェイ.

【氏名】キャッシュ、デニス、アール.

【要約】 【課題】減圧軽油沸騰内で沸騰する材料を高品質の中間留分及び/又はナフサ及びより軽質の生成物に変換するための方法、より詳しくは、単一水素ループを使用した多段方法を提供する。

【解決手段】少なくとも2つの段を有する統合水素化変換方法であって、各段は少なくとも1つの反応域を有し、第1段水素化分解反応域と第2段水素化精製反応域から構成される。第1実施形態は、第1及び第2段の間にある高温ストリッパ及び分離機を対象とし、第2の実施形態は、水素化分解域及び水素化精製域の間の温度制御を対象とする。すべての実施形態で、単一水素ループを使用する。
【特許請求の範囲】
【請求項1】
少なくとも2つの段を有する統合水素化変換方法であって、各段は少なくとも1つの反応域を有し:
(a)第1精油装置流れを第1の水素に富むガス流れと一緒にして、第1の原料油を形成すること、
(b)前記第1の原料油を、沸騰範囲の変換をもたらすのに十分な条件に維持されている第1段の反応域へ送って、正常な液相成分及び正常な気相成分を含む第1反応域の流出液を形成すること、
(c)ステップ(b)の第1反応域流出液を1台の熱交換機又は一連の熱交換機へ送り、そこで第2の精油装置流れと熱交換すること、
(d)ステップ(b)の第1反応域流出液をステップ(c)の第2の精油装置流れと一緒にして第2の原料油を形成すること、
(e)ステップ(d)の前記第2原料油を、第2精油装置流れ中の芳香族化合物の少なくとも一部を変換するのに十分な条件に維持されている第2段の反応域へ送って、第2反応域流出液を形成すること、
(f)ステップ(e)の第2反応域流出液を、生成物を含む流れと第2の水素に富むガス流れとに分離すること、
(g)ステップ(f)の第2の水素に富むガス流れの少なくとも一部を、第1段の反応域へ再循環させること、及び
(h)ステップ(f)の生成物を含む液体流れを分留塔へ送り、生成物の流れが、上部から除去されるガス又はナフサの流れ、1つ又は複数の中間留分流れ、並びにさらに処理するのに適したボトム流れを含むこと
を含む方法。
【請求項2】
ステップ1(b)段の反応域が、約340℃〜約455℃(644°F〜851°F)の範囲の反応温度、約3.5〜24.2MPa(500〜3500psi)の範囲の反応圧力、約0.1〜約10hr−1の供給原料速度(油の容積/触媒の容積・時間)及び約350標準リットルH/kg油〜1780標準リットルH/kg油(2310〜11750標準立方フィート/バレル)の範囲の水素循環速度を含む、水素化分解反応条件に維持されている請求項1に記載の方法。
【請求項3】
ステップ1(e)段の反応域が、約250℃〜約500℃(482°F〜932°F)の範囲の反応温度、約3.5〜24.2MPa(500〜3500psi)の範囲の反応圧力、約0.1〜約20hr−1の供給原料速度(油の容積/触媒の容積・時間)及び約350標準リットルH/kg油〜1780標準リットルH/kg油(2310〜11750標準立方フィート/バレル)の範囲の水素循環速度を含む、水素化精製反応条件に維持されている請求項1に記載の方法。
【請求項4】
少なくとも2つの段を有する統合水素化変換法であって、各段が少なくとも1つの反応域を有し、
(a)第1精油装置流れを第1の水素に富むガス流れと一緒にして、第1原料油を形成すること、
(b)前記第1原料油を、沸騰範囲の変換をもたらすのに十分な条件に維持された第1段の反応域へ送って、正常な液相成分及び正常な気相成分を含む第1反応域流出液を形成すること、
(c)ステップ(b)の前記第1反応域流出液を1台の熱交換機又は一連の熱交換機へ送り、そこで他の精油装置流れと熱交換させること、
(d)ステップ(c)の流出液を高温高圧分離機へ送り、そこで分別に送られる液体流れと、ライトサイクルオイル、軽油、常圧軽油及び3種類すべての混合物を含む第2精油装置流れと一緒にされるガス流れとに分離すること、
(e)ステップ(d)の一緒にしたガス流れを、第2精油装置流れ中の芳香族化合物の少なくとも一部を変換するのに十分な条件に維持された第2段の反応域へ送って、第2反応域流出液を形成すること、
(f)ステップ(e)の前記第2反応域流出液を、生成物を含む液体流れと、第2の水素に富むガス流れとに分離すること、
(g)ステップ(f)の前記第2の水素に富むガス流れの少なくとも一部を第1段の反応域へ再循環させること、及び
(h)ステップ(f)の生成物を含む液体流れを分留塔へ送り、生成物の流れが上部で除去されるガス又はナフサの流れ、1種又は複数の中間留分の流れ、並びにさらに処理するのに適したボトム流れを含むこと
を含む方法。
【発明の詳細な説明】【技術分野】
【0001】
本発明は、減圧軽油(Vacuum Gas Oil)の沸騰範囲で沸騰する材料を高品質の中間留分及び/又はナフサ並びにより軽質の生成物に変換する方法、より詳しくは、単一の水素ループを用いた多段方法を対象とする。
【背景技術】
【0002】
原油の精製においては、単一反応段又は多段反応段を利用して重質軽油をより軽質の生成物に変換するために、軽油水素化分解装置が使用されている。たいていの場合、さまざまな反応段が、同じ圧力水準で実施される。圧力水準が異なる場合は、分離水素ループが使用される。多段反応段は、以下のことを達成するために用いられる:
・全体として、最小の反応器容積及び触媒容積を使用した高変換
・より良好な生成物品質
・より少ない水素消費
【0003】
しかし、多反応システムを使用すると、多数の、費用のかかる高圧ポンプ及び圧縮機を含むより多くの装置が必要となる。
【0004】
米国特許第5,980,729号には、単一水素ループ中に多数の反応域を有する構成が開示されている。この方法では、脱窒/脱硫域の下流でホットストリッパを使用する。ホットストリッパからの液体が、水素化精製反応器の上流の水素化分解反応器へ汲み上げられる。分別部門からの再循環油も水素化分解反応装置にポンプで戻される。
【0005】
通常の水素化分解法では、水素を気相から、触媒表面で石油分子と反応するのに水素が利用できる液相に移すことが必要である。これは、触媒層を通して大容積の水素ガス及び油を巡回させることによって実現される。油及び水素は層を通り抜け、水素は触媒上に分布した油の薄膜中に吸収される。必要な水素の量は、1000〜5000標準立方フィート/液体バレル(標準立方フィート/1バレルの液体)と大きくなることがあり、必要な触媒の量も大きくなり得るので、反応装置は非常に大きくなり、かつ数百psi〜5000psiもある大きな圧力及び約400°F〜900°Fの温度という過酷な条件で稼働する可能性がある。
【0006】
米国特許第6,224,747号には、統合水素化変換プロセス内で水素化分解反応域でVGOの流れを水素化分解することが、教示されている。水素化分解反応域からの流出物は、軽質の、芳香族含有供給原料流れ、及び水素化精製反応域で水素化精製される混合した流れと一緒にされる。水素化分解された流出液は、水素化精製反応域のヒートシンクの役割を果たす。統合反応システムは、2つの反応システムで使用するための、単一の水素供給・再循環システムを提供する。しかし、水素化分解反応域と水素化精製反応域の間では、温度制御が行われていない。
【0007】
米国特許第3,592,757号(Baral)では、本発明と同様に、熱交換機による域間での温度制御が説明されている。Baralは、本発明で行っているような、単一水素ループを使用していない。Baralは、水素化分解装置(hydrocracker)と直列で運転する(水素化精製装置(hydrotreater)に類似の)ハイドロファイナ(hydrofiner)を開示しているが、このとき、生成物の一部が水素化装置に供給される。軽油供給原料は、補給水素及び再循環水素と共にハイドロファイナへ供給される。再循環流れ及び添加再循環水素は、ハイドロファイナの生成物の流れに加えられ、その混合物が水素化分解装置へ供給される。水素化分解装置生成物の流れは、冷却され、気体の流れ及び液体の流れへと分離される。気体の流れは、循環水素圧縮機に送られ、ハイドロファイナに再循環される。液体の流れは、トップ、中間、及びボトム流れに分別蒸留される。ボトム流れは、水素化分解装置に再循環される。中央流れは、補給水素圧縮機からの水素と混合され、水素化装置へ送られる。水素化装置から回収された水素は、補給水素圧縮機の段で圧縮され、ハイドロファイナへ送られる。
【0008】
米国特許第5,114,562号(Haunら)では、留出炭化水素のための二段水素化脱硫(水素化精製に類似)及び水素化法を教示している。2つの段の間には熱交換があるが、単一水素ループは使用されていない。2つの分離した反応域が連続して使用され、第1反応域は水素化脱硫用であり、第2反応域は水素化用である。供給原料は、再循環された水素と混合され、脱硫反応器に供給される。硫化水素が、向流水素によって脱硫反応器の生成物からストリッピングされる。このストリッピング操作からの液状生成物の流れは、比較的清浄な再循環水素と混合され、その混合物は、水素化反応域に供給される。水素が水素化反応器から回収され、分離された流れとして脱硫反応器及び水素化反応器に再循環される。ストリッピング操作からの水素は、分離器を通過し、水素化反応器に送られる再循環水素の一部と混合され、圧縮され、処理ステップを通過し、水素化反応に再循環される。従って、炭化水素の供給流れは、脱硫及び水素化反応器を連続して通過し、一方、比較的低圧の水素は脱硫ステップ用に供給され、比較的高圧の水素は水素化ステップ用に供給される。
【発明の開示】
【課題を解決するための手段】
【0009】
本発明の第1の実施形態を図1に開示する。この第1実施形態のプロセス構成は、多くの側面で米国特許第5,980,729号とは異なる。第1反応器は、再循環液体を使用しない、水素化精製−水素化分解の組合せ反応器である。
【0010】
反応器の下流にあるホットストリッパからの液体は、水素化分解反応が完了する次の反応段に向けて減圧される。液体の輸送には、ポンプを使用しない。また、第2水素化分解段は、第1反応段より低い圧力で動作する。
【0011】
本発明により、単一水素ループを使用して、中ないし高変換が達成できる。生成物の品質は、仕様、生成物損失の解消及び水素の節約を満たすように調整できる。反応段の圧力は、供給原料特性の固有のタイプに適した水準に保持され、すなわち、最も難しい供給原料を処理する第1段の反応器だけは、最高の圧力水準で動作しなければならない。この方法では、高温、高圧ポンプを必要としない。第2水素化分解反応器段は、本発明では主として補給水素である反応ガスに対して、並流又は向流モードで動作できる。第2水素化分解反応段には、水素分圧を最大にするために、高純度補給水素を供給する。第2段は、比較的低圧で水素化分解をするために使用することのできる、非常に活性の高い触媒が充填される。
【0012】
本発明の第2の実施形態を図2及び3に開示する。減圧軽油の流れは、統合水素変換法の第1段水素化分解反応域で最初に水素化分解される。統合水素変換法は、少なくとも1つの水素化分解段及び少なくとも1つの水素化精製段を有する。第1段の水素化分解反応域からの流出液は、軽質の、芳香族含有供給原料の流れと一緒になり、その混合流れが、水素化精製反応域を備えた第2段で水素化精製される。第1段水素化分解反応域と第2段水素化精製反応域の間で熱交換が行われ、第1段水素化精製域の温度制御が可能になる。第1段水素精製装置の温度は、第1段水素化分解装置の温度より低い。このために、変換された炭化水素の芳香族飽和が向上し、さらにまた、第1段水素化精製域の触媒を、存在することもある次の水素化分解域の触媒とは異なったものにすることができる。一実施形態では、第1段水素化精製装置からの流出液は、熱交換機で加熱され、次いで、高温高圧分離機へ送られ、そこでオーバーヘッドの軽い端の部分が除去され、低温高圧分離機へ送られる。その低温高圧分離機では、水素及び硫化水素ガスが上部で除去され、ガソリン及びディーゼル燃料範囲で沸騰する材料が精留塔に送られる。次いで、硫化水素は吸収装置で除去され、水素は圧縮され、再循環されて、層間冷却材(interbed quench)として使用され、かつ減圧軽油供給原料と混合される。
【0013】
ディーゼル燃料範囲で沸騰する物質を含有することもある、高温高圧分離機の液体流出液も精留塔へ送られる。次いで、精留塔のボトムは、水素化分解され、次に流出液が、図示されていない装置で水素化精製される。
【0014】
本発明の第2の実施形態では、いくつかの注目に値する利点が提供される。本発明は、単一の水素供給及び単一の水素回収システムを用いて、2つの精油装置の流れを水素化処理する方法を提供する。さらに、本発明は、共通の水素原料の供給によって、1つの精油装置流れを水素化分解し、第2の精油装置流れを水素化精製する方法を提供する。水素化分解反応域への供給原料は、水素化精製反応域への供給原料中に存在している汚染物によって汚染されることはない。さらに、本発明は、触媒寿命を良好に、所望の生成物、特に留出物範囲の精製装置生成物の収率を高く維持しながら、統合水素化変換法における複数の異なった精油装置の流れを水素化処理することを対象にする。このような異なった精油装置の流れは、減圧軽油水素化精製装置の流出液から誘導される、他と比較して触媒汚染物及び/又は芳香族化合物をほとんど含まないVGO、及び相当な量の芳香族化合物を含有するFCC(Fluid Catalytic Cracking process:流動接触分解装置)循環油又は直留ディーゼル燃料などの、異なった精製法に由来するものでよい。
【0015】
添付の図は、単一水素化処理ループを用いた多段反応段を説明する図である。
【発明を実施するための最良の形態】
【0016】
図1の説明
流れ1で供給される予熱された油は、予熱された循環及び補給水素ガス(反応器供給ガス)である、流れ40の水素ガスと混合される。供給原料は、供給ポンプによって反応器の圧力にまで加圧されたプロセス熱交換機内で予熱されている。供給原料及び反応器供給ガスの混合物、ここでは流れ2、は、第1段の下降流固定層主反応器(3)に入る前に、熱交換(熱交換機41内で)及び最終炉(42)により、さらに予熱される。主反応器又は第1段反応器は、水素精製又は水素分解の触媒層でありうる、水素化処理触媒の多数の層を含む。循環ガス圧縮機からの冷えた水素は、層間冷却材(4、5、6)として使用される。
【0017】
第1段反応器の流出液7は、水素化精製され、部分的には水素化分解されているが、硫化水素、アンモニア、軽質ガス、ナフサ、中間留分、及び水素化精製減圧軽油を含む。流出液は、少し低い圧力及び少し低い温度で、高温高圧分離機(8)に入り、そこでディーゼル燃料及びより軽い材料の大部分が、変換されない油から分離される。高温高圧分離機は、円板及びドーナツ型のトレーを有する。熱交換機38で加熱された水素分の多いガスは、流れ9を通って、ストリッピングのためにボトムに導入される。
【0018】
流れ11は、高温高圧分離機からのオーバーヘッドを含む。この時点で、ライトサイクルオイル(LCO)、ライトコーカー軽油(Light Coker Gas Oil:LCGO)、常圧軽油(Atmospheric Gas Oil:AGO)、ライトビスブレーカー軽油(Light Visbreaker Gas Oil:LVBGO)などの中間留分沸騰範囲で沸騰する外部の原料を導入することができる(10)。流れ11は、高圧水素ストリッパ水素化精製装置(14)に入る前に、プロセス熱交換又は蒸気発生により冷却される。流れ11の中の液体は、水素化精製触媒が密に充填された層を通って下方に流れ、その間、流れ25から逆方向に流れてくる水素と接触させられる。
【0019】
上部の流れ15は、いくらかの軽質ガス及びナフサと共に、主として水素、アンモニア及び硫化水素を含む。その流れは、低温高圧分離機第1号(17)に供給される前に、プロセス熱交換(44)、水との接触(45)により冷却され、さらに、空気冷却(46)により冷却される。水を注入することにより、水素ガスからアンモニアの大部分を水硫化アンモニウム溶液として除去することができる。水素、硫化水素及び軽い炭化水素ガスは、流れ18として上部から除去される。流れ20は、水硫化アンモニウムを含むサワー水の流れである。流れ19は、ナフサ、灯油及びディーゼル燃料範囲の流出液を含む炭化水素の流れである。流れ18は、アミン吸収装置(21)に送られ、アミンと接触することにより、硫化水素のほとんど全量が水素に富む流れから除去される(47)。硫化水素を除去した後、ガスは、圧縮のために循環ガス圧縮機(23)へ送られる。圧縮された循環ガス(24)は、流れ25及び26に分けられる。流れ26は、さらに分けられて第1段の循環ガス供給(27)及び第1段に冷却材を供給する流れ28となる。危険なアミンは、流れ48としてアミン吸収装置から離れる。
【0020】
高温高圧分離機のボトム、及び流れ12は、圧力が低減され、プロセス熱交換により冷却された後に、水素化分解反応が完了し、流れ12中の変換されていない材料が、さらにディーゼル燃料及びより軽い流出液に変換される第2段反応器(30)に供給される。第2段反応器には、補給水素圧縮機(49)の中間段から高純度補給水素(31)が供給される。好ましくは、水素は、水素分圧の利益を最大にするために、向流となって反応器を上向きに流れる。本発明は、補給水素を並流として導入することによっても動作するはずである。十分なガス対油の比を考慮した第2段反応器の供給ガス基準は、すべての反応段で必要とされる補給水素の全量を第2段反応器の前に導入することによって、満たすことができる。しかし、本発明には、流れ35により循環ガス圧縮機から循環水素を導入するという前提がある。
【0021】
第2反応段は、アンモニア及び硫化水素が含まれていない、清浄な環境下で動作し、従って、水素化分解速度定数は、はるかに大きい。触媒失活は、大きく減少する。これらの要因により、より低い水素分圧で、触媒必要量を減少させて、動作させることができる。
【0022】
第2段反応器(30)のより低い1段の層又は多段の層に水素化精製触媒を充填することができ、そこへ水素ストリッパ(14)からのディーゼル燃料範囲の材料(16)を導入し、芳香族飽和を完了させること及び他の水素化処理反応を行うことができる。或いは、流れ16は、ディーゼル燃料としての品質が十分である場合は、直接分別部門へ方向転換されうる。
【0023】
反応器30中には、少なくとも2層、好ましくは、3から4層の、水素化処理触媒層が存在する。触媒は、卑金属又は貴金属の水素化処理触媒でよい。
【0024】
反応器の塔頂からくる流れ33は、いくらかのHS及びアンモニアが存在することもあるが、主として水素を含む。その流れは、第2低温高圧分離機(17.5)へ送られる前に、プロセス用熱交換(50)によって冷却される。第2低温高圧分離機の上部の蒸気は、補給水素圧縮機(49)へ、さらに圧縮の最終段へ向かう。
【0025】
反応器30からの液体流出液、流れ34は、軽質ガス、ナフサ、中間留分及び水素化精製された軽油を含んでおり、プロセス用熱交換(51)により冷却され、低温高圧分離機N0.2(17.5)に送られる。
【0026】
前記低温高圧分離機No.2からのボトム(線37)は、分別に送られる。
【0027】
補給水素圧縮機(49)は、一般に3から4の圧縮段を有する多段機械である。各圧縮段の後、ガスは冷却され、いずれの凝縮液もノックアウトドラム(KOD)中でノックアウトされる。本発明では、第2反応段へ向かうガスは、圧縮の中間段の後で回収される。ガス流れ(31)は、第2反応段(30)へ送られ、第2低温高圧分離機(流れ36)を経由して補給水素圧縮機の最終圧縮段に戻される。
【0028】
最終圧縮段の後で、高圧補給水素は、第1反応段、流れ39及び高温分離機へ送られる。
【0029】
ここで、本発明の好ましい実施形態を開示する図2を参照する。この図には、熱交換機、凝縮器、ポンプ及び圧縮機などのさまざまな補助装置が含まれていないが、それらは、本発明にとって必須ではない。
【0030】
図2では、2つの下降流反応容器5及び15が描かれている。それらの間に熱交換機20がある。各容器には、少なくとも1つの反応域が存在する。第1段反応、水素化分解は、容器5で行われる。第2段反応、水素化精製は容器15で行われる。各容器は、3つの触媒層を有するとして描かれている。第1反応容器5は、最初の精油装置流れ1を分解するためのものである。第2反応容器15は、第2の精油装置流れ17から窒素含有及び芳香族分子を除去するためのものである。第1反応容器中の触媒容積と第2反応容器中の触媒容積の適切な比は、広範囲にわたり、第1精油装置流れと第2精油装置流れの比に依存する。通常の比は、一般に20:1〜1:20の間である。好ましい容積範囲は、10:1〜1:10の間である。より好ましい容積範囲は、5:1〜1:2の間である。
【0031】
統合法では、第1の精油装置流れ1が水素に富むガスの流れ4と一緒になって、第1の原料油(feedstock)12を形成する。炉30から出た流れ、流れ13は、第1反応容器5へ送られる。水素に富むガス流れ4は、50%を超える水素を含有しており、残りは炭化水素ガスを含むさまざまな量の軽質ガスである。図に示した水素に富むガスの流れ4は、補給水素3及び循環水素26の混合物である。循環水素を使用することは、一般に経済的理由から好ましいが、必ずしも必須ではない。第1の原料油1は、好ましくは水素化分解が行われる第1反応容器5に導入される前に、流れ12として出てくる熱交換機10などの1つ及び複数の熱交換機、及び(流れ13として出てくる)ヒータ30など1つ又は複数のヒータで加熱することができる。水素化精製は、好ましくは容器15で行われる。
【0032】
水素はまた、それぞれ第1及び第2反応段を冷却するために、経路6及び7、並びに9及び11(これも又、水素の流れ4から来るのであるが)を通って冷却流れとして加えることができる。水素化分解からの流出液である流れ14は、流れ2により熱交換機20で冷却される。流れ2は、ディーゼル燃料範囲で沸騰し、ライトサイクルオイル、軽質軽油(light gas oil)、常圧軽油(atmospheric gas oil)、又はそれらの混合物でよい。流れ2は、熱交換機20から流れ16として出て行き、熱交換機20から出てくる流れ14と合流して、混合原料油17を形成する。流れ8中の水素は、容器15に入る前に混合原料油17と合流する。流れ17は、水素化精製のために容器15に入り、流れ18として出る。
【0033】
容器15中で見られる第2反応段は、水素化精製触媒など少なくとも1つの触媒層を含んでおり、触媒層は、第2原料油中の窒素化合物の少なくとも一部及び芳香族化合物中の少なくとも一部を変換するのに十分な条件に維持されている。
【0034】
水素の流れ4は、圧縮機40からの循環水素でよい。或いは、流れ4は、本方法の外部にある水素供給源から来る、新しい水素の流れでもよい。
【0035】
流れ18、第2反応域の流出液は、熱交換機10などの熱交換により回収できることもある熱エネルギーを含む。第2段流出液18は、流れ19として熱交換機10から現れ、高温高圧分離機25へ送られる。高温高圧分離機25からの液体流出液、流れ22は、分別に送られる。分離機25からのオーバーヘッドガス流れ、流れ21は、冷却のために流れ23からの水と合流される。冷却されたばかりの流れ21は、低温高圧分離機35に入る。軽質液体は、(流れ22に合流する)流れ27で分別に送られ、サワー水は、流れ34を通って除去される。ガス状のオーバーヘッド流れ24は、硫化水素を除去するために、アミン吸収装置45に向かう。次いで、精製された水素は、流れ26を通って圧縮機40へ向かい、再圧縮されて、再循環として及び反応域を冷却する冷却流れとして1つ又は複数の反応容器へ送られる。水素のかかる利用は、当技術分野ではよく知られている。
【0036】
水素化変換法の例示的な分離構成は、米国特許第5,082,551号において教示されており、前記特許の開示は、その全体が参照によりあらゆる目的で本明細書に組み込まれる。
【0037】
吸収装置45は、反応段で発生することがあり反応流出液19に存在することもある硫化水素及びアンモニアなどの汚染物を除去するために、反応流出液19のガス成分を、アルカリ水溶液などの溶液と接触させる手段を含む。水素に富むガスの流れ24は、好ましくは、100°F〜300°F又は100°F〜200°Fの範囲の温度で、分離域から除去される。
【0038】
液体の流れ22はさらに、精留塔50で分離され、オーバーヘッドガソリンの流れ28、ナフサの流れ29、灯油留分31、ディーゼル燃料32及び精留塔ボトム33を生成する。好ましい留出物生成物は、250°F〜700°Fの温度範囲に沸騰範囲を有する。C〜400°Fの温度範囲にある沸騰範囲を有するガソリン又はナフサ留分も望ましい。
【0039】
図3には、2つの下降流反応器容器5及び15が描かれている。第1段反応、水素化分解は、容器5で行われる。第2段、水素化精製は、容器15で行われる。各容器は、少なくとも1つの反応域を有する。各容器は、三段の触媒層を有するとして描かれている。第1反応容器5は、第1精油装置流れ1を分解するためのものである。第2反応容器15は、第2精油装置流れ43から、窒素含有及び芳香族分子を除去するためのものである。第1反応容器中の触媒容積と第2反応容器中の触媒容積の適切な容積比は、広範囲に渡り、第1精油装置流れと第2精油装置流れの比に依存する。通常の比は、一般に20:1〜1:20の間にある。好ましい容積比の範囲は、10:1〜1:10の間にある。より好ましい容積比は、5:1〜1:2の間にある。
【0040】
統合法では、第1精油装置流れ1は、水素に富むガスの流れ4と合流して第1の原料油12を形成し、第1反応容器5へ送られる。水素に富むガス流れ4は、50%を超える水素を含み、残余は炭化水素のガスを含むさまざまな量の軽質ガスである。図に示した水素に富むガス流れ4は、補給水素3及び再循環水素26の混合物である。一般に、再循環水素の流れを利用することは、経済的理由から好ましいが、そのことは必須ではない。第1原料油1は、水素に富むガス流れ4と一緒になって流れ12を形成する前に、1つ又は複数の熱交換機或いは1つ又は複数のヒータで加熱することもできる。次いで、流れ12は、好ましくは水素化分解が行われる第1段が設置されている、第1反応容器5に導入される。第2段は、容器15に設置されており、その場所で、好ましくは水素化精製が行われる。
【0041】
第1段からの流出液である流れ14は、熱交換機20で加熱される。流れ14は、熱交換機20から流れ17として現れ、「高温/高温」高圧分離機55へ向かう。液体の流れ36は、「高温/高温」高圧分離機55から出て、精留塔60へ向かう。流れ37は、ガソリン及びナフサの流出液の流れを表し、流れ38は、再循環して水素化精製装置15の入り口に戻ってきた留出物を表し、流れ39は、清浄なボトムの材料を表す。
【0042】
ガスの流れ34は、「高温/高温」高圧分離機55から出て、ディーゼル燃料範囲で沸騰する、ライトサイクルオイル、軽質軽油、常圧軽油、又はこれらの混合物でありうる流れ2と合流する。その流れは、水素化精製のために容器15に入る前に、さらに、水素に富む流れ4に合流し、流れ18として出て行く。
【0043】
容器15の中で見られる第2反応域は、水素化精製触媒などの触媒の少なくとも1つの触媒層を含んでおり、触媒は、第2原料油中の窒素化合物の少なくとも一部及び芳香族化合物の少なくとも一部を変換するのに十分な条件に保持されている。
【0044】
水素の流れ4は、圧縮機40からの再循環水素であってもよい。或いは、流れ4は、本方法の外部にある水素供給源からの新しい水素の流れであってもよい。
【0045】
第2段流出液である流れ18は、熱交換機10などの熱交換により回収されうる熱エネルギーを含む。第2段流出液18は、流れ19として熱交換機10から出て、高温高圧分離機25に送られる。高温高圧分離機25の液体流出液である流れ22は、分別に送られる。分離機25からの上部ガス流れである流れ21は、冷却のために、流れ23からの水に合流される。冷却されたばかりの流れ21は、低温高圧分離機35に入る。軽い液体は、(流れ22と合流する)流れ27で分別に送られ、サワー水は流れ41を通って除去される。ガス状の上部流れ24は、硫化水素ガスを除去するために、アミン吸収装置45へ向かう。次いで、精製された水素が、流れ26を通って圧縮機40へ向かい、再圧縮されて、再循環品及び反応域を冷却するための冷却流れとして、1つ又は複数の反応容器へ送られる。水素のかかる使用法は、当技術分野ではよく知られている。
【0046】
吸収装置45は、反応段で発生することがあり反応流出液19(流れ24)に存在することもある硫化水素及びアンモニアなどの汚染物を除去するために、反応流出液19のガス成分を、アルカリ水溶液などの溶液と接触させる手段を含む。水素に富むガスの流れ24は、好ましくは、100°F〜300°F又は100°F〜200°Fの範囲の温度で、分離域から除去される。
【0047】
液体の流れ22は、さらに、精留塔50で分離され、上部ガソリンの流れ28、ナフサの流れ29、灯油留分31、ディーゼル燃料32及び精留塔ボトム33を生成する。好ましい留出物生成物は、250°F〜700°Fの温度範囲に沸騰範囲を有する。C〜400°Fの温度範囲にある沸騰範囲を有するガソリン又はナフサ留分もまた望ましい。
【0048】
供給原料
本発明の第1の実施形態では、広範囲のさまざまな炭化水素供給原料を用いる。通常の原料油は、392°F(200℃)を超える沸点を有する、重質又は合成油流分或いは工程流れを含む。そのような原料油は、減圧軽油、重質常圧軽油(heavy atmospheric gas oil)、減圧残油、ディレードコーカー軽油(delayed coker gas oil)、ビスブレーカー軽油脱金属油(visbreaker gas oil demetallized oil)、常圧残油、脱歴油、フィッシャー−トロプシュ流れ、及びFCC流れを含む。
【0049】
第2の実施形態の場合は、1つの適切な第1精油装置供給原料流れは、500°F(260℃)を超える温度から始まり、通常は500°F〜1100°F(260℃〜593℃)の温度範囲にある沸騰範囲を有する、VGOである。精油装置流れの75容積%が650°F〜1050°F(343℃〜565℃)の温度範囲で沸騰する流れは、第1反応域の例示的な原料油である。第1精油装置流れは、通常、有機窒素化合物として存在する窒素を含んでいる場合がある。第1反応域のVGOの供給流れは、約200ppm未満の窒素及び0.25重量%未満の硫黄を含むが、0.5重量%までの及びそれを超える窒素、並びに5重量%までの硫黄及びそれを超える硫黄を含有する供給原料を含む、より高水準の窒素及び硫黄を有する供給原料を、本方法で処理することができる。第1精油装置流れは、好ましくは、低アスファルテンの流れである。適切な第1精油装置流れは、約500ppm未満のアスファルテン、好ましくは約200ppm未満のアスファルテン、より好ましくは約100ppm未満のアスファルテンを含む。例示的な流れは、軽質軽油、重質軽油、直留軽油(staight run gas oil)、脱歴油(deasphalted oil)、などを含む。第1精油装置流れは、本方法に先立って、ヘテロ原子含有量を減少、又は実質的に消去するために、例えば、水素化精製法などにより処理されてもよい。第1精油装置流れは、再循環成分を含むこともある。
【0050】
水素化分解反応ステップは、第1水素化分解反応域で第1精油装置供給原料流れから窒素及び硫黄を除去し、沸騰範囲を変換する結果、水素化分解反応域流出液の液体部分は、第1精油装置原料油の標準沸騰範囲(normal boiling range)を下回る標準沸騰範囲を有する。「標準(normal)」は、D1160蒸留で測定されるような、一気圧における蒸留に基づく沸点又は沸騰範囲を意味する。別に明記しない限り、本明細書に記載されたすべての蒸留温度は、標準沸点及び標準沸騰範囲の温度を言う。第1水素化分解反応域におけるプロセスを、一定の分解変換、或いは所望する生成物の硫黄水準又は窒素水準又はその両方のために、制御することができる。一般に変換は、例えば、水素化分解装置の原料油の最小沸点などの基準温度に関連する。変換の程度は、基準温度を超える温度で沸騰する供給原料が、基準温度未満で沸騰する生成物に変換される割合に関連する。
【0051】
水素化分解反応域の流出液は、通常は液相である成分、例えば第1精油装置流れの反応生成物及び未反応成分、並びに通常は気相である成分、例えば気相反応生成物及び未反応水素、を含む。本方法では、水素化分解反応域は、650°Fの基準温度に基づいて、第1精油装置流れの少なくとも25%の沸騰範囲変換をもたらすのに十分な条件に維持される。従って、約650°Fを超えた温度で沸騰する第1精油装置流れの成分の、容積で少なくとも25%が、第1水素化分解反応域で、約650°F未満の温度で沸騰する成分へ変換される。100%という高変換水準での稼働も、また本発明の範囲にはいる。例示的な沸騰範囲変換は、約30%〜90%又は約40%〜80%の範囲である。水素化分解反応域の流出液は、窒素及び硫黄含有量をさらに減少させられ、第1精油装置流れ中の窒素含有分子の少なくとも約50%が、水素化分解反応域で変換される。好ましくは、水素化分解反応域流出液中の通常は液体である流出液は、約1000ppm未満の硫黄及び約200ppm未満の窒素、より好ましくは、約250ppm未満の硫黄及び約100ppm未満の窒素を含む。
【0052】
触媒
どちらの実施形態におけるいずれの水素化処理域も、唯一つの触媒、又はいくつかの組合せ触媒を含む。好ましい実施形態では、第1領域では水素化分解が進行し続け、第2領域では水素化精製が進行し続ける。
【0053】
一般に、水素化分解触媒は、分解成分、水素化成分、及び結合剤を含む。そのような触媒は、当業界では周知である。分解成分は、非晶質のシリカ/アルミナ、相及び/又はY又はUSYゼオライトなどのゼオライトを含むことがある。高分解活性触媒は、しばしばREX、REY及びUSYゼオライトを使用している。結合剤は、一般にシリカ又はアルミナである。水素化成分は、VI族、VII族、又はVIII族の金属、或いはそれらの酸化物或いは硫化物であり、好ましくは、鉄、クロム、モリブデン、タングステン、コバルト、又はニッケル、或いはそれらの硫化物或いは酸化物の一種又は複数である。触媒中に存在する場合は、一般にこれらの成分は、重量で触媒の約5%〜約40%を占める。或いは、貴金属、特に白金及び/又はパラジウムが単独で、若しくは卑金属水素化成分:鉄、クロム、モリブデン、タングステン、コバルト、又はニッケルと組み合わせて水素化成分として存在する。存在する場合は、白金族金属が、重量で触媒の約0.1%〜約2%を占める。
【0054】
通常、水素化精製触媒は、硫黄及び窒素を除去し、ある程度芳香族を飽和させるように設計される。一般にその触媒は、アルミナなどの多孔性耐熱基板上に担持された、VI族の金属又はそれらの化合物、及びVIII族の金属又はそれらの化合物、の複合材料である。水素化精製触媒の例は、アルミナに担持されたコバルト−モリブデン、硫化ニッケル、ニッケル−タングステン、コバルト−タングステン及びニッケル−モリブデンである。通常、このような水素化精製触媒は、事前にスルフィド化される。
【0055】
触媒の選択は、工程の要求及び生成物の仕様によって規定される。特に、少量のHSが存在するときは、第2段で貴金属触媒を使用することができる。低酸性度触媒は、留出物を過分解してガス及びナフサにするのを避けるために、第2段の水素化分解装置のボトムで使用することがある。
【0056】
条件−水素化分解段
水素化分解反応域の反応条件は、約250℃〜約500℃(482°F〜932°F)の反応温度、約3.5MPa〜約24.2MPa(500〜3500psi)の圧力、及び約0.1〜20hr−1の供給原料速度(油の容積/触媒の容積・時間)を有する。水素の循環速度は、一般に、約350標準リットルH/kg油〜1780標準リットルH/kg油(2310〜11750標準立方フィート/バレル)の範囲である。好ましい反応温度は、約340℃〜約455℃(644°F〜851°F)の範囲である。好ましい全反応圧力は、約7.0MPa〜約20.7MPa(1000〜3000psi)の範囲である。好ましい触媒系では、好ましい工程条件は、約13.8Mpa〜約20.7MPa(2000〜3000psi)の圧力、約379〜909標準リットルH/kg油(2500〜6000標準立方フィート/バレル)の油に対するガスの比率、約0.5〜1.5hr−1のLHSV、及び360℃〜427℃(680°F〜800°F)の範囲の温度を含む水素化分解条件下で、石油原料油を水素と接触させることを含むことを発見した。
【0057】
供給原料及び流出液の特性−水素化精製段
第2精油装置供給原料の流れは、一般に第1精油装置供給原料の流れより低い沸点範囲を有する。実際、第2精油装置供給原料流れのかなりの部分が、中間留分範囲内に標準沸点を有する結果、沸点を下げるための分解が必要でないことが、本方法の特徴である。従って、適切な第2精油装置の流れの少なくとも約75容積%が、約1000°F未満の標準沸点を有している。その成分の少なくとも約75容積%が250°F〜700°Fの範囲内に標準沸点を有する精油装置流れは、好ましい第2精油装置供給原料流れの例である。
【0058】
本発明の方法は、高品位燃料に適していない中間留分流れを処理するのに、特に適している。例えば、本方法は、90%までの芳香族化合物及びそれより多い量の芳香族化合物を含有する流れを含む、大量の窒素及び/又は大量の芳香族化合物を含む第2精油装置の流れを処理するのに適している。本方法で処理するのに適した例示的な第2精油装置供給原料流れは、原油蒸留、常圧塔ボトム(atmospheric tower bottoms)、又はコーカー軽油(coker gas oil)、ライトサイクルオイル(light cycle oil)又はヘビーサイクルオイル(heavy cycle oil)などの合成分解材からの、直留ディーゼル留分を含めた、直留減圧軽油を含む。
【0059】
第1精油装置供給原料流れは、水素化分解段で処理された後、第1水素化分解域の流出液は第2原料油と一緒にされ、その組合せが水素化精製段で触媒上を水素と共に通過した。水素化分解された流出液は、水素化精製を行って除去すべき汚染物質を、既に比較的含まなくなっているので、水素化分解装置の流出液は、ほとんど変化しないまま水素化精製装置を通過する。水素化精製装置からの流出液中に留まっている未反応又は不完全反応供給原料は、そこに含まれている触媒の汚染を防止するために、水素化分解域から事実上分離される。
【0060】
しかし、水素化分解装置流出液が存在することは、本統合法における重要な、予想外の経済的利益をもたらす。水素化分解装置を離れながら、流出液はかなりの熱エネルギーを持ち運ぶ。このエネルギーは、第2供給原料流れが水素化精製装置に入る前に、熱交換機中で第2反応器供給原料流れを加熱するのに用いることができる。これにより、他の場合に必要とされるものと較べて、より低温の第2供給原料流れを統合システムに添加することができ、炉の容積と加熱コストが節約できる。
【0061】
第2原料油が、水素化精製装置を通過するときは、第2領域での発熱反応による加熱によって、温度が再び上昇する傾向がある。第2原料油中の水素化分解装置流出液は、ヒートシンクとして作用し、水素化精製装置の至る所で温度上昇を和らげる。水素化精製装置を離れる液体反応生成物に含まれるエネルギーは、さらに、加熱を必要とする他の流れと熱交換するために利用できる。一般に、水素化精製装置の出口温度は、水素化分解装置の出口温度より高い。この場合は、本発明は、より有効な熱伝達を行うために、第1水素化分解装置の供給原料温度を上げるという、さらなる熱伝達上の利点をもたらす。水素化分解装置からの流出液は、圧力を上昇させるための加熱又はポンプを必要とせずに、第1段水素化精製装置で用いる未反応水素を運ぶこともできる。
【0062】
条件−水素化精製装置段
水素化精製装置は、第2精油装置の流れから来る窒素の少なくとも一部及び芳香族化合物の少なくとも一部を除去するのに十分な条件に維持されている。反応域内の発熱による加熱から温度勾配が生じ、1つ又は複数の反応域へ相対的に冷却された流れを加えることによりこれを和らげる場合を除いて、水素化精製装置は、水素化分解装置より低い温度で動作する。反応域を通る反応液体の流れの供給速度は、0.1〜20hr−1液空間速度の範囲である。水素化精製装置を通る供給原料の速度は、水素化分解装置を通る供給原料速度と比較して、第2精油装置供給原料流れ中の液体供給量の分だけ上昇し、やはり、0.1〜20hr−1液空間速度の範囲にある。第1反応域のために選択されたこれらの工程条件は、水素化精製法のために通常選択される条件より、厳しいと考えてよい。
【0063】
とにかく、水素化精製装置で通常用いられる水素化精製条件は、約250℃〜約500℃(482°F〜932°F)の反応温度、約3.5MPa〜約24.2MPa(500〜3500psi)の圧力、及び約0.1〜20hr−1の供給原料速度(油の容積/触媒の容積・時間)を有する。水素の循環速度は、一般に、約350標準リットルH/kg油〜1780標準リットルH/kg油(2310〜11750標準立方フィート/バレル)の範囲である。好ましい反応温度は、約340℃〜約455℃(644°F〜851°F)の範囲である。好ましい全反応圧力は、約7.0MPa〜約20.7MPa(1000〜3000psi)の範囲である。好ましい触媒系では、好ましい工程条件は、約16.0Mpa(2300psi)の圧力、約379〜909標準リットルH/kg油(2500標準立方フィート/バレル〜6000標準立方フィート/バレル)のガスと油の比、約0.5〜1.5hr−1の液空間速度(LHSV)、及び360℃〜427℃(680°F〜800°F)の範囲の温度を含む水素化分解条件のもとに、層状触媒システムの存在下で石油原料油を水素と接触させることを含むことを発見した。これらの条件下では、芳香族化合物の少なくとも約50%が、水素化精製装置内で第2精油装置流れから除去される。第2精油装置流れにある窒素の30〜70%又はそれを超える量が、この工程で除去されることが期待される。しかし、水素化精製装置内での分解変換は、一般に小さく、通常は20%未満である。精油装置流れの芳香族含有量及び窒素含有量の測定には、標準法が利用できる。これらは、約1500ppmを超える窒素を含む流れの窒素含有量を測定するための、ASTM D5291を含む。ASTM D5762は、約1500ppm未満の窒素を含む流れの窒素含有量を測定するのに使用することができる。ASTM D2007もまた、精油装置流れの芳香族含有量を測定するのに使用することができる。
【0064】
生成物
本発明の実施形態は、約250〜700°F(121〜371℃)の範囲で沸騰する中間留分の製造に特に有用である。中間留分は、約250〜700°Fのおよその沸騰範囲を有するものと定義される。中間留分成分の少なくとも75容積%、好ましくは85容積%が、250°Fを超える標準沸点を有する。中間留分成分の少なくとも約75容積%、好ましくは85容積%が700°F未満の標準沸点を有する。「中間留分」という用語は、ディーゼル燃料、ジェット燃料及び灯油沸騰範囲留分を含む。灯油又はジェット燃料の沸点範囲は、280〜525°F(38〜274℃)の範囲を云う。
【0065】
ガソリン又はナフサも本発明の方法で製造されうる。ガソリン又はナフサは、通常、400°F(204℃)未満、又はC〜の範囲で沸騰する。どの精油装置でも回収されるさまざまな生成物留分の沸騰範囲は、原油源の特性、局地的な精油装置市場及び生成物の価格などの要因により変動する。
【0066】
本発明の他の生成物である、重質水素化精製軽油は、通常、550〜700°Fの範囲で沸騰する。
【実施例1】
【0067】
これらは、図1に描かれた方法を用いて得られた条件及び結果である。
【表1】


【0068】
一般に、セタンの引き上げは、20〜45であり、灯油煙点の向上は、7〜27mmである。
【図面の簡単な説明】
【0069】
【図1】段間高温ストリッパ及び段間高温分離機の使用を示す図である。
【図2】熱交換機によって隔てられた単一水素ループ中の、直列の水素化分解装置及び水素化精製装置を示す図である。軽質及び重質物質が互いに分離される。水素及び硫化水素を、軽質生成物から分離することができる。水素は圧縮されて再循環される。生成物は精留塔へ送られる。
【図3】その後に分離及び分別を伴う水素化分解ステップを示す図である。上部から除去された材料は、軽い芳香族の流れと一緒にされ、水素化精製される。水素は、水素化精製された流出液から分離され、再循環される。生成物は、精留塔へ送られる。
【出願人】 【識別番号】503148834
【氏名又は名称】シェブロン ユー.エス.エー. インコーポレイテッド
【出願日】 平成19年12月3日(2007.12.3)
【代理人】 【識別番号】100066692
【弁理士】
【氏名又は名称】浅村 皓

【識別番号】100072040
【弁理士】
【氏名又は名称】浅村 肇

【識別番号】100107504
【弁理士】
【氏名又は名称】安藤 克則


【公開番号】 特開2008−121019(P2008−121019A)
【公開日】 平成20年5月29日(2008.5.29)
【出願番号】 特願2007−312142(P2007−312142)