トップ :: B 処理操作 運輸 :: B29 プラスチツクの加工;可塑状態の物質の加工一般

【発明の名称】 射出成形樹脂の製造方法、射出成形樹脂、成型物、酢酸成分の抽出方法。
【発明者】 【氏名】森本 正親

【氏名】佐々野 雅哉

【要約】 【課題】加圧加熱水を利用して、木材等を原料に射出成型用の熱可塑性樹脂を生成すること。

【解決手段】木材等の植物片と、リグニン又はポリプロピレン等の熱可塑性の樹脂を所定の割合で混合し、前記植物片および混成用樹脂の混合物を、高サイクルで繰り返し圧縮することによって繰り返し衝突を行わせ、前記圧縮および衝突によるエネルギーによって前記混成用樹脂を溶融させるとともに、混合物中に含まれる水を亜臨界若しくは亜臨界に近い状態にまで活性化し、前記活性化した水の性質によって、植物片に含まれる高分子の多糖体であるセルロースを低分子化するとともにセルロースに結合しているリグニンを分離し、前記圧縮および衝突の緩和によって水の活性化を停止しつつ前記低分子化したセルロースと前記分離したリグニンおよび前記混成用樹脂に含まれるリグニンおよび熱可塑性の樹脂とを結合させること。
【特許請求の範囲】
【請求項1】
(a)破砕して小片化した木材等の植物片と、リグニン若しくはリグニンを含む樹脂又はポリプロピレン等の熱可塑性の樹脂を主成分とする混成用樹脂の小片を所定の割合で混合し、
(b)前記植物片および混成用樹脂の混合物を、高サイクルで繰り返し圧縮することによって繰り返し衝突を行わせ、
(c)前記圧縮および衝突によるエネルギーによって前記混成用樹脂を溶融させるとともに、混合物中に含まれる水を亜臨界若しくは亜臨界に近い状態にまで活性化し、
(d)前記活性化した水の性質によって、植物片に含まれる高分子の多糖体であるセルロースを低分子化するとともにセルロースに結合しているリグニンを分離し、
(e)前記圧縮および衝突の緩和によって水の活性化を停止しつつ前記低分子化したセルロースと前記分離したリグニンおよび前記混成用樹脂に含まれるリグニンおよび/または熱可塑性の樹脂とを結合させることを特徴とする射出成形用樹脂の製造方法
【請求項2】
(a)破砕して小片化した木材等の植物片と、リグニン若しくはリグニンを含む樹脂またはポリプロピレン等の熱可塑性の樹脂を主成分とする混成用樹脂の小片を所定の割合で混合し、
(b)前記植物片および混成用樹脂の混合物を、円筒状のチャンバ内壁に沿って回転させつつ高サイクルで繰り返し圧縮することによって繰り返し衝突を行わせ、
(c)前記圧縮および衝突によるエネルギーによって前記混成用樹脂を溶融させるとともに、混合物中に含まれる水を亜臨界若しくは亜臨界に近い状態にまで活性化し、
(d)前記活性化した水の性質によって、植物片に含まれる高分子の多糖体であるセルロースを低分子化するとともにセルロースに結合しているリグニンを分離し、
(e)前記圧縮および衝突の緩和によって水の活性化を停止しつつ前記低分子化したセルロースと前記分離したリグニンおよび前記混成用樹脂に含まれるリグニンおよび/または熱可塑性の樹脂とを結合させて固体状の射出成形用樹脂を生成し、
(f)前記射出成形用樹脂の生成課程で生じた液状成分および気体成分を、前記チャンバ内壁に沿った回転による遠心力を利用して分離したことを特徴とする射出成形用樹脂の製造方法
【請求項3】
前記混合物に作用する圧縮の程度が自動または手動により調節可能であることを特徴とする請求項1または請求項2記載の射出成形用樹脂の製造方法
【請求項4】
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロースと、前記天然のセルロースに含まれていたリグニンおよび/若しくは他の熱可塑性樹脂を比重1.1以上の密度となるように結合させたことを特徴とする射出成形用樹脂
【請求項5】
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロースと、前記天然のセルロースと共に存在していたリグニンおよび5〜15重量パーセントの重量割合で付加した熱可塑性の樹脂を比重1.1以上の密度となるように結合させたことを特徴とする射出成形用樹脂
【請求項6】
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロースと、前記天然のセルロースと共に存在していたリグニンおよび/若しくは他の熱可塑性樹脂を比重1.1以上の密度となるように結合させた射出成形用樹脂によって所定形状の成形物を形成し、当該成型物の表面に天然の漆による塗膜を形成したことを特徴とする成型物
【請求項7】
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロー
スと、前記天然のセルロースに含まれていたリグニンおよび/若しくは他の熱可塑性樹脂を比重1.1以上の密度となるように結合した射出成形用樹脂によって所定形状の成形物を形成し、当該成型物の表面に、塗膜の形成後に高温付加によって塗膜を乾燥および付着を行う所謂焼き付け塗装を行ったことを特徴とする成型物。
【請求項8】
(a)破砕して小片化した木材等の植物片を円筒状のチャンバ内壁に沿って回転させつつ高サイクルで繰り返し圧縮することによって繰り返し衝突を行わせ、
(b)前記圧縮および衝突によるエネルギーによって植物片に含まれる水を亜臨界若しくは亜臨界に近い状態にまで活性化し、
(c)前記活性化した水の性質によって当該植物片から液状の酢酸成分を分離して取得することを特徴とする酢酸成分の抽出方法。
【発明の詳細な説明】【技術分野】
【0001】
本発明は、射出成形樹脂の製造方法、射出成形樹脂、成型物、酢酸成分の抽出方法に関する。
【背景技術】
【0002】
石油系の樹脂は、押し出し成形の他、射出成形による成形も容易である。しかし、当該石油系の樹脂によって形成された物品は、使用後の大半が投棄され環境破壊を招くものとなっている。また、廃材となった建築用木材、製材時に生じる廃材、間伐材、都市部の街路樹から生じる落ち葉等の処分方法についても未だ確立したものがない。
当該観点から、微生物によって分解可能なように木材等を混入した樹脂等についての研究が行われている。しかし、これは単に樹脂をバインダーとして木質片を混練したものに過ぎず、比較的開口の大きい押し出し用の金型による押し出し成形は可能であるものの、ノズル口の面積が小さい射出成形には不向きである。これは、樹脂自体に肉眼で見分けることができる程度の繊維がそのまま混在しているのでノズルが詰まりやすく、木質に含まれている酢酸成分によって高温下でノズルを腐食させる場合等があるからである。
また、高分子の多糖体であるセルロースが高圧熱水(亜臨界水)によって低分子化されることが知られており、高圧熱水(亜臨界水)によって、木材からリグニンを抽出して樹脂化する技術が研究されている。亜臨界水とは、臨界点(22MPa、374℃(図5参照))に至る直前の状態の水をいう。臨界点付近では、圧力操作のみで液体(密度が高い)若しくは気体(密度が低い)の状態に変化する性質がある。
【0003】
また、特許文献1記載の浸透農薬スパイクが知られている。当該浸透農薬スパイクは、ポリエチレンオキシド、ポリエチレングリコールを結合材として浸透農薬と混合してドライ混合物を製造し、当該ドライ混合物を高温高圧により溶融成形して生成物を形成し、当該生成物の表面に生分解性コーティングを施したものである。なお、当該特許文献1記載の浸透農薬スパイクは、樹脂と農薬のみによって形成されたものであり、廃材として処分される木材などを原料としたものではない。
また、特許文献2記載の生分解性射出成型物が知られている。当該生分解性射出成型物組成物は、生分解性の射出成型可能な成型物であるが、廃材として処分される木材などを原料としたものではない。
また、特許文献3記載のケナフ繊維強化組成物が知られている。当該組成物は、ケナフの繊維が100μm〜20mmの長さを残存させることで組成物の強度を高めたものであるが、繊維がそのまま残っているので射出成形には不向きである。
また、特許文献4記載の木質樹脂組成物が知られている。当該組成物は、熱可塑性樹脂と植物性セルロースとを単に混練し、一部または全部を溶融せしめたものであり、成型方法として押し出し成形が用いられるものである。
また、特許文献5記載の生分解性繊維質成形体が知られている。当該生分解性繊維質成形体は射出成形に用いることができるものであるが、射出成型時の流動性を持たせるために水を混合し、脱型後に乾燥させるものである。
【特許文献1】特表昭58−500613号公報
【特許文献2】特開2005−97606号公報
【特許文献3】再公表特許WO2004/063282号公報
【特許文献4】特開2005−307033号公報
【特許文献5】再公表特許WO2003/074242号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本願発明は、上記課題に鑑み発明されたものであって、草木等の天然由来の成分の割合が多いにも拘わらず射出成形用の樹脂素材としての流動性が高く、ノズルを腐食させる酢酸成分の含有量が極めて少なく、しかも成形前後の収縮率が小さい射出成形用樹脂を提供することを課題とする。また、当該射出成形用樹脂を使用した成型物、その他関連する技術を提供することを課題とする。
【課題を解決するための手段】
【0005】
上記課題に鑑み、本願請求項1記載の発明は下記の構成を有する。すなわち、
(a)破砕して小片化した木材等の植物片と、リグニン若しくはリグニンを含む樹脂又はポリプロピレン等の熱可塑性の樹脂を主成分とする混成用樹脂の小片を所定の割合で混合し、
(b)前記植物片および混成用樹脂の混合物を、高サイクルで繰り返し圧縮することによって繰り返し衝突を行わせ、
(c)前記圧縮および衝突によるエネルギーによって前記混成用樹脂を溶融させるとともに、混合物中に含まれる水を亜臨界若しくは亜臨界に近い状態にまで活性化し、
(d)前記活性化した水の性質によって、植物片に含まれる高分子の多糖体であるセルロースを低分子化するとともにセルロースに結合しているリグニンを分離し、
(e)前記圧縮および衝突の緩和によって水の活性化を停止しつつ前記低分子化したセルロースと前記分離したリグニンおよび前記混成用樹脂に含まれるリグニンおよび/または熱可塑性の樹脂とを結合させることを特徴とする射出成形用樹脂の製造方法
【0006】
また、本願請求項2記載の発明は下記の構成を有する。すなわち、
(a)破砕して小片化した木材等の植物片と、リグニン若しくはリグニンを含む樹脂またはポリプロピレン等の熱可塑性の樹脂を主成分とする混成用樹脂の小片を所定の割合で混合し、
(b)前記植物片および混成用樹脂の混合物を、円筒状のチャンバ内壁に沿って回転させつつ高サイクルで繰り返し圧縮することによって繰り返し衝突を行わせ、
(c)前記圧縮および衝突によるエネルギーによって前記混成用樹脂を溶融させるとともに、混合物中に含まれる水を亜臨界若しくは亜臨界に近い状態にまで活性化し、
(d)前記活性化した水の性質によって、植物片に含まれる高分子の多糖体であるセルロースを低分子化するとともにセルロースに結合しているリグニンを分離し、
(e)前記圧縮および衝突の緩和によって水の活性化を停止しつつ前記低分子化したセルロースと前記分離したリグニンおよび前記混成用樹脂に含まれるリグニンおよび/または熱可塑性の樹脂とを結合させて固体状の射出成形用樹脂を生成し、
(f)前記射出成形用樹脂の生成課程で生じた液状成分および気体成分を、前記チャンバ内壁に沿った回転による遠心力を利用して分離したことを特徴とする射出成形用樹脂の製造方法
【0007】
また、本願請求項3記載の発明は下記の構成を有する。すなわち、
前記混合物に作用する圧縮の程度が自動または手動により調節可能であることを特徴とする請求項1または請求項2記載の射出成形用樹脂の製造方法
【0008】
また、本願請求項4記載の発明は下記の構成を有する。すなわち、
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロースと、前記天然のセルロースに含まれていたリグニンおよび/若しくは他の熱可塑性樹脂を比重1.1以上の密度となるように結合させたことを特徴とする射出成形用樹脂
【0009】
また、本願請求項5記載の発明は下記の構成を有する。すなわち、
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロースと、前記天然のセルロースと共に存在していたリグニンおよび5〜15重量パーセント
の重量割合で付加した熱可塑性の樹脂を比重1.1以上の密度となるように結合させたことを特徴とする射出成形用樹脂
【0010】
また、本願請求項6記載の発明は下記の構成を有する。すなわち、
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロースと、前記天然のセルロースと共に存在していたリグニンおよび/若しくは他の熱可塑性樹脂を比重1.1以上の密度となるように結合させた射出成形用樹脂によって所定形状の成形物を形成し、当該成型物の表面に天然の漆による塗膜を形成したことを特徴とする成型物
【0011】
また、本願請求項7記載の発明は下記の構成を有する。すなわち、
高分子の多糖体として存在する天然のセルロースから生成した低分子化されたセルロースと、前記天然のセルロースに含まれていたリグニンおよび/若しくは他の熱可塑性樹脂を比重1.1以上の密度となるように結合した射出成形用樹脂によって所定形状の成形物を形成し、当該成型物の表面に、塗膜の形成後に高温付加によって塗膜を乾燥および付着を行う所謂焼き付け塗装を行ったことを特徴とする成型物。
【0012】
また、本願請求項8記載の発明は下記の構成を有する。すなわち、
(a)破砕して小片化した木材等の植物片を円筒状のチャンバ内壁に沿って回転させつつ高サイクルで繰り返し圧縮することによって繰り返し衝突を行わせ、
(b)前記圧縮および衝突によるエネルギーによって植物片に含まれる水を亜臨界若しくは亜臨界に近い状態にまで活性化し、
(c)前記活性化した水の性質によって当該植物片から液状の酢酸成分を分離して取得することを特徴とする酢酸成分の抽出方法。
【発明の効果】
【0013】
本願発明に係る射出成形用樹脂の製造方法は、樹木に限らず、葉や草等のセルロースを有する概ね全ての植物を原料として使用することができるものである。
また、木材は木酢として知られているように酢酸成分を有しているので、当該酢酸成分が高温で射出成形機のノズル等に接すると、当該ノズルを腐食させることになる。しかし、本願発明に係る方法で生成された射出成形用樹脂は、製造過程で酢酸成分が除去されるので、成型時に射出成形機のノズルを腐食させることがない。
また、本願発明に係る方法は、活性化した水の作用によって前記酢酸成分を分離し、植物に含まれるセルロース、リグニンおよび同時に投入したPP等その他の熱可塑性樹脂を、繊維の存在が目視できなくなる程度の微細レベルで混成または合成させるものである。したがって、当該方法で生成された本願発明に係る樹脂は、加熱によって通常の石油由来の成型用樹脂と同様の流動性を有するので、複雑な形状の成形品でも形成することができる。
また、当然ながら、従来のセルロース繊維を単に混練した混合樹脂とは異なり、成型機のノズルに繊維成分が詰まるようなことはない。
また、本願発明に係る樹脂は、結合している成分同士の結合が密であって成形型に対する成型物の収縮率が極めて小さい。したがって、精密な寸法形状が求められるものであっても、切削加工によらず、射出成形によって寸法精度の高い成型物を取得することができる。
また、石油系の樹脂成型物と異なり、下塗りをすることなく天然の漆を塗布することが可能なので、従来木材を加工して形成していた汁碗や工芸品といったものへの利用に適しており、下塗りが不要な分安価に製造できるという効果を有している。
【発明を実施するための最良の形態】
【0014】
以下、本願発明を実施するための最良の形態を説明する。
図1は、本願発明に係る射出成形樹脂の製造方法を適用する装置の一例である処理装置1を構造を簡略化して示したものである。
当該処理装置1は、主な構成として略円筒状の強固な金属壁によって囲まれた空間9を有するチャンバー2と、当該チャンバー2内で回転する羽根3(3a、3b)、4(4a、4b),5,6と当該各羽根の回転軸となる軸7と、当該軸7を回転させるためのモータ8を有している。軸7とモータ8の駆動軸は、プーリーを用いたベルトで駆動力が伝達されるようになっており、軸7に急激な負荷がかかった場合にベルトを滑らせ急激な負荷がモータ8に及ばないようになっている。
【0015】
チャンバー2が有する空間9は前述の通り強固な金属壁によって覆われており、後に述べる樹脂合成時の衝撃、内圧、発熱に耐えることができるようになっている。また、当該金属壁は冷却水によって冷却されるようになっており(図示せず)、樹脂合成時に発生する発熱によって金属壁が損傷するのを防いでいる。なお、過度の冷却はチャンバー2内で生じる反応を阻害することになるので、チャンバー2の破壊および内容物の炭化を防止し、かつ空間9内を樹脂の合成に適した温度に保つように温度管理が行われている。
また、当該処理装置1には射出成形樹脂の材料となる木片やポリプロピレン(以下「PP」)等の樹脂片を計量し搬送する自動搬送装置が接続されているが、図1および以下の説明では説明を省略する。
【0016】
また、空間9内には、軸7の外周に取り付けられ軸7の回転に伴って回転する羽根3(3a、3b)、4(4a、4b),5,6が設けられている。本実施の形態における前記各羽根は、先端が空間9の内周壁に沿って円弧状に形成された細長の板状体として形成されており、各羽根の先端と空間9の内周壁との隙間はごく僅かとなるようになっている。
【0017】
各々2枚で一対となる羽根3a、3bおよび羽根4a、bは、軸7を中心として180度位相が異なる位置に設けられている。羽根3aと羽根3bは、回転に伴って次第に対向する間隔が狭くなるような取り付け角で軸7に固定されている。同様に、羽根4aと羽根4bも回転に伴って次第に対向する間隔が狭くなるような取り付け角で軸7に固定されている。すなわち、羽根3aおよび羽根3bと羽根4aおよび羽根4bは、共に羽根の先端側から軸7方向を見ると「ハ」の文字を成すように取り付けられている。本実施の形態では、各羽根の取り付け角度は回転方向に対して約15度に設定されている。
前記各羽根は、回転に伴ってチャンバ内に投入された混合物を羽根3aおよび羽根3bの間隔の広い側で受け入れて羽根3aおよび羽根3bの間隔の狭い部分から放出し、さらに羽根4aおよび羽根4bの間隔の広い側で受け入れて、間隔の狭い部分から放出するようになっている。そして、当該羽根の作用によって混合物の圧縮、衝突を高速で繰り返しつつ、チャンバ内壁に沿って混合物を旋回させている。
具体的には、羽根3aに接触した混合物は羽根3b側に向かって付勢され、羽根3bに接触した混合物は羽根3a側に向かって付勢される。そして、互いに対向するように付勢された混合物は外周方向へ付勢されつつ羽根の中間付近で衝突する。同様に、羽根4aに接触した混合物は羽根4b側に向かって付勢され、羽根4bに接触した混合物は羽根4a側に向かって付勢される。そして、互いに対向するように付勢された混合物は外周方向へ付勢されつつ羽根の中間付近で衝突することになる。
【0018】
羽根3aおよび羽根3bと羽根4aおよび羽根4bは、前述した通り軸7を中心として180度位相が異なる配置で設けられており、さらに、軸7の長手方向に対する取り付け位置もやや異なっている。
前記各羽根3a、3b、4a、4bは、軸7の回転に伴って羽根3aと羽根3b間の狭い部分を通過した混合物を、次の羽根4aと羽根4bの一方を中心に接触させて羽根4aと羽根4bの間に導いた後に狭い部分から放出し、再び羽根3aと羽根3bの一方を中心に接触させて羽根3aと羽根3bの間に導いた後に狭い部分から放出するという作用を連
続的に繰り返す配置となっている。
図1に示した例で説明すると、羽根3bの狭側端部と羽根4bの広側端部の回転時の軌跡が概ね一致し、羽根4aの狭側端部と羽根3aの広側端部の回転時の軌跡が概ね一致するような配置となっている。そして、軸7の略中間部分に位置する羽根3aの狭側端部と羽根4bの狭側端部の間には回転時に羽根が通過しない領域が形成されている。
【0019】
また、羽根3aの外側には、当該羽根3aと同一角度で取り付けられた羽根5が設けられており、羽根3a、3bに導かれなかった混合物を羽根4aの広側端部に導くようになっている。また、羽根4bの外側には、当該羽根4bと同一角度で取り付けられた羽根6が設けられており、羽根4a、4bに導かれなかった混合物を羽根3bの広側端部に導くようになっている。このようにして、チャンバ内に投入された混合物は、ほぼ羽根3aおよび羽根3bと羽根4aおよび羽根4bに挟まれた中央部付近において、圧縮、衝突、旋回等が繰り返し行われるようになっている。
【0020】
前記チャンバ2内で回転可能に設けられた軸7の内部には冷却水を通過させる通路(図示せず)が設けられており、発熱した羽根を当該軸7を介して冷却するようになっている。また、軸7の端部はチャンバ2の外側まで延びており、当該チャンバ2の外側部分においてV型プーリーが取り付けられ、Vベルトを介してモータ8によって回転駆動されるようになっている。
当該モータ8は、制御装置10に接続されており、モータ8に作用する負荷および各種センサが検出した情報に基づいて回転の開始、停止、回転速度の調整等が行われるようになっている。
処理装置1には、図1に示したものの他、チャンバー2の内部に合成すべき素材(混合物)を自動軽量、自動供給する供給装置、生成された樹脂を自動的に排出、搬送する装置、当該樹脂をペレットとして小片化する粒状化装置が設けられているが、本願明細書においてはそれらの装置の説明は省略する。
【0021】
前記各種センサとしては、チャンバ2内の圧力を監視する圧力センサ14、チャンバ2内の温度を検知する温度センサ15、軸7の回転数を検知する回転計17等が設けられており、計測された情報は制御装置10にフィードバックされ、チャンバ2内部の状態を反応に適した状態に維持する制御が行われている。また、チャンバ2内の圧力を調節する調圧弁16が設けられている。
制御装置10には、混合物の内部で水の亜臨界状態を発生させ、所定時間維持させる制御が必要となる。反応が進みすぎると混入物を炭化させてしまったり、機器を破損させるおそれがあるし、反応が不十分であれば混入した物質の十分な反応が進まず、意図した樹脂が生成されないことになる。
【0022】
反応に適した最適な条件は、チャンバ2内に混入する素材や素材の割合、量、含水率、装置1固有の特性、チャンバ2内の温度および圧力と、軸7による羽根の回転速度(周速)によって異なる。特に、羽根の回転速度、角度および間隔の変化が、混成時の発熱量や混合物に付加される圧力に大きく影響する。羽根の角度および間隔が一定の場合、回転速度による影響が大きく作用する。混合物に作用するエネルギーは、混合物に付勢される速度の2乗に比例すると考えられるので、回転速度の変化が温度と圧力の変化に著しく影響し、含まれている水分の亜臨界水への遷移および亜臨界水になっている水の状態が変化するからであると考えられる。亜臨界の状態は、僅かな圧力の変化によって液体から気体、気体から液体へと状態が変化するといわれている。したがって、回転速度に影響される亜臨界水の状態がセルロースの分解・再合成に大きく関係しているものと考えられる。
【0023】
次に、前記処理装置1による樹脂の生成(製造)プロセスについて説明する。以下に説明する反応、若しくは反応を行わせる条件、手順等が本願発明に係る射出成形用樹脂の製
造方法に関する説明となる。
重量割合で95〜85パーセントの小片化した植物片と、重量割合で5〜15パーセントの熱可塑性樹脂をチャンバ内に投入する。当該植物片と熱可塑性樹脂の混合物(以下単に「混合物」という)の総量は、チャンバ2の処理能力によって変動する。
投入される植物片には、間伐材、製材所等で排出される木片、建材、廃棄処分となったパチンコ台、家具等に使用されている木質系の廃材(木、合板等)、綿(コットン)製の衣類、布団等、主としてセルロースを含むものが含まれる。前記植物片の重量割合は、一般的な生活環境において湿度50〜70パーセント程度、気温10度〜35度程度で水没することなく放置された状態での重量割合である。
なお、予め原料から水分を除去する必要はなく、後述するように水分は必要な要素である。木材等は通常の生活環境であれば一定の含水量を有しているので、水を含浸させる或いは乾燥させる等の前処理をする必要はなくそのまま使用することができる。もし、塗装された合板等、何らかの事情で水分の含有量が少ない素材を用いる場合には、混合物とともにチャンバー内に水を追加投入する。
【0024】
前記熱可塑性樹脂には、PS(ポリスチレン)、PE(ポリエチレン)、ABS樹脂、ゴム、および本願発明に係る射出成型用樹脂自体、別工程で生成され樹脂化されたリグニン等が含まれる。なお、実験例では、アルミニウムが混合されたプラスチックゴミを用いた場合であっても、本願発明に係る射出成型用樹脂と同様の熱可塑性樹脂が生成されることが確認されている。
なお、本願発明は、できるだけPP等の石油由来の樹脂の使用量を低減し、天然由来の成分を多く使用することを発明の目的としてPP等の重量割合を5〜15パーセントとして説明をしているが、むろん、石油由来の樹脂の重量割合を15パーセント以上としても熱可塑性の射出成型用樹脂を生成することができる。石油由来の樹脂の重量割合が増加すると、物性が石油由来の樹脂本来の性質に近くなるが、このような性質を利用して用途に応じて混合量を可変することも可能である。
【0025】
前記割合の混合物をチャンバー2内に投入した後、モータ8を回転させ、プーリーとVベルトを介して軸7を回転させる。モータ8の回転は制御装置10によって制御されており、当該制御装置10によってモータ8の回転軸に作用するトルク等の検知を行いつつ回転数を上昇させるようになっている。チャンバ2内では、軸7の回転とともに羽根3、4,5,6が回転し、投入された混合物の微細化を進行させる。
【0026】
混合物と羽根との衝突および羽根によって付勢された混合物同士の衝突による衝撃等によって混合物が微細化されると、チャンバ内における混合物の流動性が良くなる。そして、羽根3aと3b間の通過、羽根4aと4b間の通過を交互に繰り返しつつさらに微細化が進行して微細レベルでの混合物同士の衝突頻度が増加する。また、当該衝突頻度が上昇しつつ、羽根3aと3b間および羽根4aと4b間の通過の際に受ける周方向への付勢によて混合物自体もチャンバ内壁に沿って回転する。
混合物は、前記チャンバ内での回転によって生じる遠心力で内壁に押し付けられつつ、次第に狭路となるように配置された羽根3aと3b間の通過および羽根4aと4b間の通過の際に圧力を受ける。混合物は、この周方向(内壁に対して直角方向に働く遠心力)と軸7の長手方向の4方向から、羽根の回転周期に応じて繰り返し圧力を受ける。そして、当該圧力下で衝突によるエネルギーによって混合物内に含まれる種々の物質を発熱させ、内部に含まれる物質の物性に応じて溶融化等の状態変化が起る。
【0027】
混合物に作用する軸7方向の圧力は、羽根3aと3bの狭路部分および羽根4aと4bの狭路部分の通過によって瞬間的にピークに達する。そして、この圧力の高くなる部位は羽根3aと3bのほぼ中間位置、羽根4aと4bのほぼ中間位置に分布し、当該圧力の分布に応じて温度の上昇率が高くなるものと考えられる。
図4は、混合物が溶融した状態での羽根3aと3b(羽根4aと4b)の狭路部分での温度分布の想定図である。実際には測定することができないものであるが、概ね図示した状態になるものと推測される。図示した領域T1は、羽根3aと3b(羽根4aと4b)の中央付近であって、チャンバ内壁11から若干離れた部位である。当該領域T1は、圧縮による発熱とチャンバ内壁11および羽根3aと3bを介した放熱とのバランスによって温度が高く、かつ周囲の溶融物によって放熱量よりも蓄熱される熱量が上回る状態(瞬間的に断熱に近い状態)となり熱量が蓄積される領域である。当該領域T1を中心として、チャンバ内壁11および羽根3aと3b(羽根4aと4b)に近づくにしたがって(T2、T3、T4、T5)温度が低くなっていると推測される。
【0028】
混合物13は、当初は固体状の粒状物であるが、羽根3aと3b(羽根4aと4b)の作用によって衝突を繰り返しつつ発熱し、当該発熱によって熱可塑性樹脂の溶融および木材等に含まれている水分の加熱分離に伴い、固形物を溶融物が包み込んで全体がゲル化する。
図3は、チャンバ2内における前記ゲル化した状態の混合物13の速度分布を表したものであり、羽根の中央領域での速度分布の想定したものである。混合物13は、チャンバ2の内周壁に沿って輪状に分布する。羽根の速度は内周壁に近いところで最速となるが、混合物13は粘性を有しているので周壁に接した部分は速度が低く、そして軸7の中心にやや近づいた位置で速度が最速となり、回転半径の縮小に伴って再び速度が低下するという速度分布を有していると推測される。
前記速度分布を伴う混合物13の回転は、F=(質量)×(速度)2/(半径)で表さ
れる遠心力を生じさせる。すなわち、混合物には、接線方向の速度の2乗に比例し回転中心からの距離に反比例した遠心力が作用し、当該遠心力が後に混合物から生じた液状成分を粘度、比重の違いによって混合物13の溶融固形成分から分離する作用を有する。
【0029】
混合物13のゲル化への移行は、モータの駆動軸に作用する負荷(トルク)をモニターすることで判断することができる。モータに作用するトルクは、混合物13の微細化に伴って緩やかに上昇し、ピークを迎えた後下降する。当該トルクの下降時期が混合物13のゲル化が進行する時期であり、当該時期が最も混合物13内での反応が促進される時期である。
全体がゲル化すると、固体状の粒子であった場合と比較して、羽根3aと3b(羽根4aと4b)の回転によって圧縮される混合物の密度が高くなり、羽根3aと3b(羽根4aと4b)の間で局部的に急激な温度上昇を伴う発熱を生じるようになる。
そして、チャンバ2内の混合物を取り囲む環境(温度と圧力)が一定の条件下の場合、前記ゲル化した混合物が羽根3aと3b(羽根4aと4b)によって圧縮される際のエネルギーによって内部に含まれる水分が瞬間的に亜臨界水に変化する。
前述した通り、亜臨界水とは、臨界点(温度374℃・圧力22MPa)を超える少し前の状態の水であり、セルロース(多糖類の高分子)を低分子に分解する性質を有し、セルロースとともに植物中に含まれているリグニンをセルロースから分離する作用を有することが知られている。
【0030】
前記ゲル化した初期の混合物は、物理的な粉砕によって単に微細な固形物が混ざり合っている状態であり、セルロースの組成自体に変化はない。しかし、亜臨界水と接する状況では、大きな塊となっている高分子状態のセルロースは、分子間の結合が分断されて低分子化する。そして、主として細胞の結合成分として含まれているリグニンをセルロースから分離する。この亜臨界水によるセルロースの分解は、当初羽根3aと3b(羽根4aと4b)の中間位置で始まり、それが繰り返されることで熱が蓄積されつつ、亜臨界水によるセルロースの分解が周囲の混合物にも急激に広がる。
【0031】
前記亜臨界水による反応が連続的に始まると、チャンバ内の温度が数秒間で60℃程度
から200℃程度まで急激に上昇する。なお、温度上昇率の一番高い部分では、当該200℃を超え、温度374℃・圧力22MPa以下の亜臨界状態になっている。亜臨界に達した後、セルロースの分解や冷却等でエネルギーを放出した水は、水蒸気化してチャンバ外に放出されることになる。
セルロースの分解や他の成分の分離および水の消費が進行すると、ゲル状態の混合物の粘度が急上昇する。そして、当該粘度の上昇に伴って羽根の回転に対する負荷が増加する。
すなわち、セルロースの分解、再合成、成分(気体、液体、固体)の分離の終了時期を、モータに作用する負荷(トルク)の変化で判断することができる。制御装置10は、当該トルクの上昇開始からチャンバ内での反応の終了時期を判断し、所定時間の経過後にモータの回転速度を次第に低下させる。当該モータの回転数の緩和にしたがって、羽根と遠心力の作用でチャンバ中央付近に保持されていた液状成分がチャンバ内の底部分に移動するので、これを再びゲル状物と交わらないように取出し、羽根の回転を停止した後に内部に残った固形物をチャンバ内から取り出す。最終的に当該チャンバ内から取り出した固形物が、熱可塑性の性質を有する本願発明に係る射出成形用の樹脂素材となる。
【0032】
特に、木を主体とした原料を処理した場合、前記セルロースの分解課程において、内部に含まれている酢酸成分が液状化した状態で分離する。この分離プロセスが物理的なものであるか、亜臨界水による科学的な反応によるものであるのかは、まだ出願人は解明していない。しかし、分離された液体を分析すると、現在一般的に木酢と称して販売されている酢酸を含有した液体と同様の成分を有していることが解っている。また、当該酢酸を含む液体は、水の含有率の少ない極めて濃度の濃いものとなっている。
前記亜臨界水が発生している状態のチャンバ内では、主としてゲル状化した成分(溶融した固体成分)と、液状化(ゾル化)した成分と、水蒸気が混在しながら回転による遠心力によって内壁に押し付けられている。当該遠心力は、ゲル(固体)S、液体L、気体Gを比重の違いで分離する作用を有しており(図2参照)、セルロースを分解するとともに、セルロース、ニグニン、追加混入した熱可塑性樹脂を主成分とするゲル状体(固体成分)から液状成分と気体成分を排除し密度を高める作用を有している。また、当該チャンバ内に最終的に残った固形物は、水分が排除され極めて含水率の低い状態となっている。
【0033】
前述の装置およびプロセスで生成された樹脂素材は、現在ごく一般的に使用されているPP、PSといった石油由来の樹脂と同様に熱可塑性を有し、成形型内に高圧で注入して製品を得る射出成形の素材として使用可能な性質を有している。
そして、当該生成物は、単に射出成形が可能であるというだけではなく、混合物の成分によっては成形型に対する収縮率が2/1000程度と極めて低いことが解っている。これは、寸法精度が要求される精密成型に適しているということである。また、前述したように酸である酢酸成分を排除しているので、射出成型器のノズルを腐食させることがないという性質を有している。
また、電磁波の吸収特性があることが解っている。したがって、電磁波ノイズを出す製品のカバーとして利用したり、電子機器のカバーに利用して電磁波ノイズの進入を防止する用途として使用することができる。
さらに、当該生成物は、PP等の石油由来の樹脂に換えて、本願発明に係る射出成型用の樹脂を使用することができる。すなわち、本願発明に係る射出成型用の樹脂を添加用の熱可塑性樹脂として繰り返し使用すると、成分が100パーセント植物由来の天然素材に近い、射出成型用の樹脂を生成することができる。
また、混成用の熱可塑性樹脂として、生分解性の樹脂を使用することができる。したがって、使用後に廃棄した場合であっても、添加した熱可塑性樹脂自体も微生物によって分解が可能であるから、環境破壊を伴う可能性が極めて低いものとなっている。
【0034】
[薬剤成分含有成型物]
前記本願発明に係る射出成形物の用途の一例および当該用途に適した射出成形物等について説明する。
当該用途の一つは、薬剤を含浸させた図6に示す小石状の成型物20、21である。当該成型物は、前述の製法によって生成した射出成形用樹脂を、成形型によって小石状の形状に射出成形したものである。大きさは、全長約3cm(±2cm)程度である。
当該成型物20、21は、本願発明によって生成された直後の、水分の排除によって乾燥した状態を維持した射出成形樹脂を使用して小石状に成形し、当該成形直後に薬液中に沈め、薬液成分を含浸させたものである。
当該薬液としては、除草薬を含んだ液を用いることができ、小石状の成型物20、21に当該除草薬を含浸させることができる。当該薬液を含浸させた成型物を土壌表面に敷き詰めると、少しづつ分解して除草薬成分等を放出し続け、長期間に亘って雑草が生えるのを防ぐことができる。なお、特定の害虫に作用する殺虫成分を使用してもよい。
さらに、薬液として、草花の肥料成分を含んだ液を用いることができる。当該肥料成分を含んだ小石状の成型物を花壇やプランター表面に敷き詰めると、含浸させた成分が少しづつ放出され、長期に亘ってって肥料を供給し続けることができるという効果を有している。
なお、前記小石状の成型物は、粉砕して微細化した植物片を熱可塑性の樹脂で溶融接合させた従来方法による植物片混合樹脂によって形成してもよい。リグニンを主成分とする熱可塑性の樹脂を使用すると総天然素材に近い成型物を得ることができる。当該植物片混合樹脂は、流動性が悪く、微細な形状を再現する射出成形には不向きであるが、押し出し成形やプレス式の押圧成形などには使用することができる。したがって、単純な塊や比較的肉厚のある成型物を作る場合には、植物片混合樹脂によって形成してもよい。
【0035】
次に、前記薬液を含浸させるのに適した射出成形物の製造方法について説明する。本願発明によって生成した射出成型用樹脂は、処理前に存在するセルロースを全て低分子化させると、密度の高い比重1.1以上の射出成形用樹脂を得ることができる。そして、当該射出成形用樹脂によって成形した成型物は、地肌に光沢があり、素材に木材等が使用されているという痕跡を見つけることができない程の仕上がりとなる。
しかし、前記完成度の高い射出成形用樹脂を用いて成形した成型物は、その完成度に比例して成型後に吸収できる含水量が少なくなる。したがって、前記薬液を含浸させることを主な目的とする場合には、木材の繊維が多少残存しており、当該繊維に薬液を含浸させることができる程度の成型物が望ましい。すなわち、当該成型物を作るには、植物に含まれているセルロースを全て分解するのではなく、未分解若しくは分解が不十分なセルロースを残している成型用樹脂を使用することが好ましい。このような制御は、制御装置10等により行うことが出来る。
【0036】
前記分解が十分ではないセルロースを残した状態の射出成形用樹脂は、前記制御装置によるモータの制御によって、亜臨界による処理が進行して軸7の回転トルクが最小値になってから後の回転停止までの時間の調節によって行うことができる。最も完成度の高い射出成形用樹脂生成に要する時間を最長として、当該時間より短い時間を設定することで、不十分な反応を行わせ、繊維状のセルロースが目視で確認できる程度残存し、かつ熱可塑性を有する射出整形用素材を生成することができる。
当該反応が不十分な射出成形用樹脂を用いて前記小石状の成型物を成形し、成形直後に当該成型物を薬液に浸すと、残された繊維の隙間に多量の薬液を浸透させることができる。
【0037】
[カプセル]
図7、図8は、本願発明に係る射出成形用樹脂による成型物の一例を示すものであり、半球状の2分割体(半体)による直径5cm程度の玩具販売用カプセルを試験的に作成したものである。
図7に示した成形例によるカプセルは、一番左側が樹皮とPPを混成物として生成した射出成形用樹脂で射出成形したものである。以下順に、未乾燥の枝、葉とPPを混成物としたもの、乾燥させた枝、葉とPPを混成物としたもの、右端が葉のみとPPを混成物とした射出成形用樹脂で射出成形したものである。図8は、一例として樹皮とPPを混成物とによる射出成形用樹脂で射出成形した玩具用カプセルの内部(写真左)を表した写真である。カプセル内部には、幅1mm程度のリブが設けられているが、当該リブの末端にまで樹脂が行き渡り、細かい部分形状まで金型通りに形成されていることが解る。
【0038】
前記図7、図8に示したカプセル50は、外殻体となる蓋(2分割体)51、52の頂部に平坦な凹部53,54(平坦部)を形成し、平坦部53に複数の孔55を設けている。なお、平坦部53と平坦部54の双方に孔を設けても差し支えない。
当該玩具用カプセル50は、小型の植木鉢としての用途を想定しており、種と土を玩具用カプセル50内に収容して販売し、玩具用カプセル50をそのまま植木鉢として利用できるようにしたものである。前記孔55は、植木鉢としての水の排出用に使用される。植木鉢としての使用後は、大きなプランターや花壇に埋めておくことで、微生物により分解させることができるものである。
なお、前記当該容器は、粉砕して微細化した植物片を熱可塑性の樹脂で溶融接合させた従来方法による植物片混合樹脂によって形成してもよい。リグニンを主成分とする熱可塑性の樹脂を使用すると総天然素材に近い成型物を得ることができる。当該植物片混合樹脂は、流動性が悪く、微細な形状を再現する射出成形には不向きであるが、押し出し成形やプレス式の押圧成形などには使用することができる。したがって、前記寸法より大きな比較的肉厚のある成型物を作る場合には、植物片混合樹脂によって形成してもよい。
【0039】
[プラモデル]
図9は、本願発明に係る射出成形用樹脂(混成樹脂)による成形例を示すものであり、所謂プラモデル60としてランナー61(射出成型時に溶融した樹脂の通路となる枠状部分)内に、昆虫のカブトムシを象った模型を作るための複数のパーツ62(造形物)を形成したものである。従来存在した木質素材を混練しただけの成形素材では、図示したような細いランナーを有するような成形物を形成することができなかった。これに対して、本願発明に係る射出成形用樹脂は、ランナーを有する成型物であっても形成することができ、型表面の模様まで詳細に再現できるものとなっている。
【0040】
[連結ブロック玩具]
図10は、本願発明に係る射出成形用樹脂による成形例を示すものであり、所謂玩具としての連結ブロック70を形成したものである。図10(a)は連結ブロック70の上方斜視図、図10(b)連結ブロック70の下方斜視図、図10(c)は試作した連結ブロック70を複数個連結させた例を示した写真である。
従来一般の、石油系の樹脂は、成形型に対する収縮率が比較的大きいために、成型後の引けを考慮して、肉厚が厚くならないようにしている。すなわち、肉厚の厚い部分は収縮量も多く凹んだ状態になるため、連結ブロックのような立方体状の形状を作るる場合にはできるだけ内部を空洞化させる等の工夫をしていた。
これに対して本願発明に係る射出成形用樹脂(混成樹脂)は、成形型に対する収縮率が2/1000程度と極めて低いために、前述したような成形後の引けをほとんど考慮する必要がない。したがって、立方体若しくは直方体状の本体部71を、肉抜きをしない中実体として形成している。そして、本体の表面には各ブロック同士を適度な結合力で着脱可能とする嵌合用凸部72と、当該嵌合用凸部と嵌合可能な形状の当該嵌合用凹部73が設けられている。図示した例では、嵌合用凸部の形状が円柱であり嵌合用凹部の形状は円形孔である。従来の樹脂では、このような円柱と穴の嵌合を成型品によって精度良く行わせるのは熱収縮による寸法変化により極めて困難であった。しかし、本願発明に係る射出成形用樹脂は、嵌め合いの精度をほぼ設計通りに再現することができるというすぐれた効果
を有しているので、上記のような形状の連結ブロック玩具の形成が可能となっている。
【0041】
[漆塗布製品]
本願発明に係る射出成形用樹脂(混成樹脂)により形成した成型物は、その一つの特徴として、下塗りを必要としないという特徴を有している。従来一般の石油由来の樹脂による成型物は、そのままでは天然の漆が乗らないために、所定の下塗りが必要であった。これに対して本願発明に係る射出成形用樹脂(混成樹脂)により形成した成型物は、下塗りをすることなく天然の漆を塗布できることができる。したがって、従来、木工製品に対して行っていたのと同様の手順により、下塗りをすることなく、本願発明に係る射出成形用樹脂で成形した汁碗等の食器、重箱、家具、その他の工芸品に下塗りを要せず漆を塗布した製品を作ることが出来る。これは、石油由来の樹脂による成型物と比較して、安価に漆塗り製品を提供することができるということである。
【0042】
[焼き付け塗装製品]
本願発明に係る射出成形用樹脂(混成樹脂)により形成した成型物は、その一つの特徴として、焼き付け塗装ができるという特徴を有している。すなわち、従来一般の石油由来の樹脂による成型物は、熱に弱いものが多いために塗膜を高温付加によって乾燥および付着させる所謂焼き付け塗装を行うことが出来なかった。これに対して本願発明に係る射出成形用樹脂(混成樹脂)を用いて形成した成形物は焼き付け塗装が可能であり、従来塗料の塗布が行えなかった樹脂成形品についても焼き付け塗装が可能となっている。
【0043】
[他の実施例]
次に、本願発明に使用する処理装置の他の実施例を説明する。図11は、他の実施例に係る処理装置100の構造を簡略化して示したものである。当該処理装置100の主な構造は前記処理装置1とほぼ同じであり、同一の手段については同一の符号を付しその説明を省略する。
前記処理装置1と異なる点は、羽根3a、4aおよび5を取り付けた回転軸30が、モータ8にベルトを介して取り付けられた羽根3b、4bおよび6を有する回転軸33に対して、軸方向に移動可能となっている点である。回転軸30と回転軸33は、チャンバ2内の略中央部分において分離している。しかし、両回転軸は同期して回転するように中央で噛み合うように構成されている。回転軸33は、移動せず、常に一定の場所で回転する。
【0044】
回転軸33は、チャンバ2内の略中央部分以降が小径に形成されており、当該小径部の外周で、筒状に形成されている回転軸30の内周部を支持するようになっている。回転軸33の内周部と回転軸30の外周部の間には空間31が設けられており、回転軸30内を通過する冷却水が穴32を介して空間31に導かれるようになっている。当該空間31は、Oリング33によって気密性が保たれており、冷却水が漏れないようになっている。
回転軸33は、スラストベアリング35によって一端が支持された圧縮スプリング34によって、チャンバ2の内側方向に押圧されている。すなわち、回転軸33に取り付けられている羽根3a、4aおよび5が負荷を受けた場合に、圧縮スプリング34の弾性に抗して回転軸33を移動させ、羽根3a、4aおよび5に対する負荷を逃がすようになっている。
なお、回転軸33の移動は、反応の程度を調節するために手動式としても差し支えない。
【0045】
特に羽根3a、4aに対して負荷がかかる場合とは、チャンバ2内で処理されている混合物13の粘性が増して同時に羽根3b、4bにも負荷がかかる状況である。すなわち、モータ8の回転トルクが増加する射出成形樹脂生成の最終段階で起こる状況である。
前述した処理装置1の場合には、モータ8の回転トルクを検知して、モータ8の回転を
制御してモータ8に対する過負荷が生じないようにしていた。また、急激な負荷についてはベルトの滑りによって負荷を逃がしていた。これに対して本実施例の場合には、モータ8の回転トルクが増加しはじめると、羽根3a、4aに対して生じる負荷によって回転軸33が移動し、羽根3a、4a(羽根3b、4b)およびモータ8に過負荷がかからないようになっている。
【0046】
以上説明した、本願発明に係る射出成形樹脂の製造方法、射出成形樹脂、成型物、酢酸成分の抽出方法は、いずれも植物に含まれる高分子状態のセルロースを、圧縮等による自己発熱によって発生した亜臨界水によって低分子状態のセルロースに分解し、植物に含まれているリグニンを含む成分によって再結合することにより熱可塑性の樹脂を生成したこと、および当該熱可塑性の樹脂の特徴を効果的に利用したところに発明の要旨がある。したがって、前述した反応装置1および100等は、当該亜臨界水によるセルロースの分解と再合成を行わせるための一つの手段に過ぎず、使用する装置は前述した例に限られるものではない。
本願発明を使用しているか否かの一つの目安は、別途設けた熱源によって樹脂が溶解するほどの外部加熱を行わずに内部で発熱を行わせているということと、反応の進行に伴って水蒸気の放出が行われることである。発生する水蒸気の一部は、亜臨界水に変化した水が、圧力の低下若しくはエネルギーの放出によって液体に戻るのではなく気体である水蒸気に変化することにより生じる。外部から装置を見ると、急激に水蒸気が発生したように観察される。このような反応装置は、本願発明を実施している蓋然性が極めて高く、これらの特徴が本願発明を実施しているか否かの一つの目安となる。
【産業上の利用可能性】
【0047】
本願発明は、廃材を含めた天然素材を原料とした射出成形樹脂の製造、当該射出成形樹脂の性質を利用した各種成型物の生成および廃棄物処理に利用可能である。
【図面の簡単な説明】
【0048】
【図1】本願発明に用いる処理装置の概略図であり、(a)は要部概略図、(b)はチャンバ内の概略平面図、(c)はチャンバ内の概略側面図である。
【図2】本願発明に係る処理中のチャンバー内の状態を表す説明図である。
【図3】本願発明に係る処理中のチャンバー内混合物の速度分布を説明するための説明図である。
【図4】本願発明に係る処理中のチャンバー内混合物の温度分布を説明するための説明図である。
【図5】水の臨界点、亜臨界領域を説明するための説明図である。
【図6】本願発明に係る射出成形用樹脂を用いて形成した小石状成型物の写真である。
【図7】本願発明に係る射出成形用樹脂を用いて形成したカプセル状成型物の写真である。
【図8】本願発明に係る射出成形用樹脂を用いて形成したカプセル状成型物の写真である。
【図9】本願発明に係る射出成形用樹脂を用いて形成したランナー付きプラモデルの写真である。
【図10】本願発明に係る射出成形用樹脂を用いて形成したブロックの図および写真である。
【図11】本願発明に用いる他の処理装置を説明するための説明図である。
【符号の説明】
【0049】
1 処理装置
2 チャンバー
3(3a、3b)、4(4a、4b),5,6 羽根
7 軸
8 モータ
9 空間
10 制御装置
11 チャンバ内壁
13 混合物
14 圧力センサ
15 温度センサ
16 調圧弁
17 回転計
【出願人】 【識別番号】304006540
【氏名又は名称】株式会社エムアンドエフ・テクノロジー
【識別番号】500005457
【氏名又は名称】株式会社シー・ピー・トムズ
【出願日】 平成18年10月5日(2006.10.5)
【代理人】 【識別番号】100081363
【弁理士】
【氏名又は名称】高田 修治


【公開番号】 特開2008−93831(P2008−93831A)
【公開日】 平成20年4月24日(2008.4.24)
【出願番号】 特願2006−274523(P2006−274523)