トップ :: B 処理操作 運輸 :: B23 工作機械;他に分類されない金属加工

【発明の名称】 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
【発明者】 【氏名】中村 惠滋

【氏名】長田 晃

【氏名】土屋 新

【氏名】本間 尚志

【要約】 【課題】硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具を提供する。

【構成】硬質被覆層がTi化合物層の下部層と、(Al,Cr)23層の上部層で構成された被覆サーメット工具において、工具基体と前記下部層の間に改質WC層を介在させ、前記上部層を、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この測定値から、構成原子共有格子点分布グラフを作成した場合に、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質(Al,Cr)23層で構成する。
【特許請求の範囲】
【請求項1】
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造および1〜15μmの平均層厚を有し、かつ、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足するAl系複合酸化物層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる、表面被覆サーメット製切削工具において、
(1)上記工具基体と下部層の間に下地介在層として、0.1〜2μmの平均層厚を有する改質炭化タングステン層、
を化学蒸着形成すると共に、
(2)上記上部層としてのAl系複合酸化物層を、同じく化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質Al系複合酸化物層、
で構成したことを特徴とする、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具。
【発明の詳細な説明】【技術分野】
【0001】
この発明は、硬質被覆層の上部層を構成する酸化アルミニウム(以下、Al23で示す)層がすぐれた高温強度を有し、さらに同じく硬質被覆層を構成する炭化タングステン(以下、WCで示す)層が硬質被覆層の高温硬さ低下を一段と抑制するように作用することから、特に各種の鋼や鋳鉄などの被削材の切削加工を、高い機械的熱的衝撃および熱発生を伴う高速断続切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
【背景技術】
【0002】
従来、一般に、WC基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足するAl系複合酸化物[以下、(Al,Cr)23で示す]層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
【0003】
また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
【0004】
さらに、上記の被覆サーメット工具の硬質被覆層を構成する(Al,Cr)23層が、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1に(Al,Cr)23の単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されることも知られている。
【特許文献1】特開昭52−66508号公報
【特許文献2】特開平6−8010号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高い機械的熱的衝撃および発熱を伴う高速断続切削加工に用いた場合には、硬質被覆層を構成する(Al,Cr)23層が十分な高温強度を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易く、さらに硬質被覆層形成時の高温環境下で工具基体の構成成分、特にこれの結合相形成成分であるCoやNi、さらにCrやVなどの成分が硬質被覆層中に拡散含有するようになり、この結果硬質被覆層の高温硬さの低下が避けられず、これらが原因で比較的短時間で使用寿命に至るのが現状である。
【課題を解決するための手段】
【0006】
そこで、本発明者等は、上述のような観点から、上記の(Al,Cr)23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記(Al,Cr)23層の高温強度向上を図るべく研究を行った結果、
(a)従来被覆サーメット工具の硬質被覆層を構成する上部層としての(Al,Cr)23層(以下、「従来(Al,Cr)23層」という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl:6〜10%、CrCl:0.1〜0.65%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl、CrCl、CO、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(反応ガス成分高含有調整低圧条件)で蒸着形成すると、この結果の反応ガス成分高含有調整低圧条件で形成した(Al,Cr)23層(以下、「改質(Al,Cr)23層」という)は、同じく化学蒸着した状態でα型の結晶構造を有すると共に、高温強度が一段と向上し、すぐれた耐機械的熱的衝撃性を具備するようになること。
【0007】
(b)上記の従来被覆サーメット工具の硬質被覆層の上部層を構成する従来(Al,Cr)23層と上記(a)の改質(Al,Cr)23層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来(Al,Cr)23層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質(Al,Cr)23層は、図4に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl、CrCl、CO、およびHClの含有割合、さらに雰囲気反応圧力によって変化すること。
なお、上記の改質(Al,Cr)23層および従来(Al,Cr)23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
【0008】
(c)一般に、被覆サーメット工具の硬質被覆層の構成層としてのWC層は、通常の化学蒸着装置にて、
反応ガス組成:容量%で、WF:0.5〜5%、C:0.5〜10%、H2:10〜35%、Ar:残り、
反応雰囲気温度:500〜900℃、
反応雰囲気圧力:5〜30kPa、
の条件で蒸着形成されるが、WC層を、同じく通常の化学蒸着装置にて、例えば、
反応ガス組成:容量%で、WF:0.04〜0.4%、CHCN:0.06〜0.6%、NH:0.1〜1%、H2:40〜80%、Ar:残り、
反応雰囲気温度:980〜1100℃、
反応雰囲気圧力:5〜15kPa、
の高温条件で蒸着形成すると、この結果形成されたWC層(以下、改質WC層という)には、すぐれた密着性を有すると共に、上記硬質被覆層形成時の高温環境下においても隣接層の構成成分が拡散侵入できない性質があり、したがって、これを前記工具基体と硬質被覆層の下部層との間に下地介在層として存在させると、前記工具基体および下部層の両方と強固に密着接合すると共に、特に硬質被覆層形成時の高温環境下できわめて高い活性を発揮する成分、すなわち前記工具基体の結合相形成成分であるCoやNi、さらにCrやVなどの成分の硬質被覆層中への拡散侵入が阻止され、前記硬質被覆層は、これ本来の具備する特性、すなわちすぐれた高温硬さを保持することになり、この結果切削加工に際して、すぐれた耐摩耗性を満足に発揮するようになること。
【0009】
(d)したがって、上記工具基体と硬質被覆層の下部層との間に上記改質WC層を下地介在層として設け、さらにすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有する前記改質(Al,Cr)23層を硬質被覆層の上部層として、下部層の上記Ti化合物層と共に、前記工具基体の表面に蒸着形成してなる被覆サーメット工具は、前記改質WC層が工具基体と硬質被覆層との密着性を一段と強固なものにすると共に、前記工具基体の構成成分の前記硬質被覆層中への拡散侵入を阻止することと相俟って、特に激しい機械的熱的衝撃および高熱発生を伴なう高速断続切削加工でも、前記硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
【0010】
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足する(Al,Cr)23層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる、被覆サーメット工具において、
(1)上記工具基体と下部層の間に下地介在層として、0.1〜2μmの平均層厚を有する改質WC層、
を化学蒸着形成すると共に、
(2)上記上部層としての(Al,Cr)23層を、同じく化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質(Al,Cr)23層、
で構成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
【0011】
以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)改質WC層(下地介在層)
改質WC層は、上記の通り、工具基体および下部層のTi化合物層と強固に密着接合して、前記工具基体に対する硬質被覆層の密着性向上に寄与するほか、特に前記工具基体における活性度の高い結合相構成成分の硬質被覆層への拡散侵入を阻止して、前記硬質被覆層が本来具備するすぐれた高温硬さを保持し、耐摩耗性の低下を抑制する作用を有するが、その平均層厚が0.1μm未満では、前記作用を十分に発揮させることができず、一方前記作用は2μmまでの平均層厚で十分であることから、その平均層厚を0.1〜2μmと定めた。
【0012】
(b)Ti化合物層(下部層)
Ti化合物層は、基本的には上部層である改質(Al,Cr)23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、改質WC層および改質(Al,Cr)23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう難削材の高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
【0013】
(b)改質(Al,Cr)23層(上部層)
上記の改質(Al,Cr)23層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Cr成分にはAl成分との共存において、さらに一段と耐熱性を向上させる作用を有するが、Crの含有割合を示すX値が原子比で0.01未満では前記作用に所望の向上効果を確保することができず、一方同X値が0.1を越えると高温強度に低下傾向が現れるようになることから、前記X値を0.01〜0.1と定めた。
また、上記の改質(Al,Cr)23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するAlCl、CO、CrCl、およびHClの含有割合、さらに雰囲気反応圧力を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。このように前記改質(Al,Cr)23層は、上記の通り(Al,Cr)23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が1μm未満では前記改質(Al,Cr)23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
【0014】
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
【発明の効果】
【0015】
この発明被覆サーメット工具は、硬質被覆層の上部層を構成する改質(Al,Cr)23層が(Al,Cr)23層自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、さらに下地介在層としての改質WC層が工具基体と硬質被覆層の下部層との密着性向上に寄与すると共に、硬質被覆層形成時における工具基体の構成成分、特に結合相形成成分の硬質被覆層中への拡散侵入を防止し、もって前記硬質被覆層自身の本来具備する性質を保持する作用を発揮することから、下部層のTi化合物層のもつすぐれた高温強度と相俟って、各種の鋼や鋳鉄などの切削加工を、特に強い機械的熱的衝撃を伴なう断続切削加工を高速切削条件で行うのに用いた場合にも、すぐれた耐チッピング性および耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。
【発明を実施するための最良の形態】
【0016】
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
【実施例】
【0017】
原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
【0018】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
【0019】
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される組み合わせおよび目標層厚で改質WC層およびTi化合物層を硬質被覆層の下地介在層および下部層として蒸着形成し、ついで、同じく表3に示される条件で改質(Al,Cr)23層(a)〜(g)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
【0020】
また、比較の目的で、表5に示される通り、硬質被覆層の上部層として、表3に示される条件で従来(Al,Cr)23層(a)〜(g)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で蒸着形成し、かつ、下地介在層である改質WC層の形成を行なわない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
【0021】
ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質(Al,Cr)23層および従来(Al,Cr)23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Al,Cr)23層および従来(Al,Cr)23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
【0022】
この結果得られた各種の改質(Al,Cr)23層および従来(Al,Cr)23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表4,5にそれぞれ示した。
【0023】
上記の各種の構成原子共有格子点分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の改質(Al,Cr)23層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来(Al,Cr)23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆サーメット工具9の改質(Al,Cr)23層の構成原子共有格子点分布グラフ、図5は、従来被覆サーメット工具8の従来(Al,Cr)23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
【0024】
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0025】
つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:3mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件Aという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は180m/min)、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min、
切り込み:4mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件Bという)での合金鋼の乾式高速断続切削試験(通常の切削速度は150m/min)、さらに、
被削材:JIS・FCD400の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:3mm、
送り:0.15mm/rev、
切削時間:10分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は160m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0026】
【表1】


【0027】
【表2】


【0028】
【表3】


【0029】
【表4】


【0030】
【表5】


【0031】
【表6】


【0032】
表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層である改質(Al,Cr)23層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示し、この結果前記改質(Al,Cr)23層はすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有するようになり、さらに下地介在層として設けた改質WC層が工具基体と硬質被覆層の下部層との密着性向上に寄与すると共に、工具基体の構成成分、特に結合相形成成分の硬質被覆層中への拡散侵入を防止し、もって前記硬質被覆層自身の本来具備するすぐれた高温硬さが保持されることから、下部層のTi化合物層のもつすぐれた高温強度と相俟って、特に機械的熱的衝撃が高い鋼や鋳鉄の高速断続切削でも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来(Al,Cr)23層で構成され、この結果前記従来(Al,Cr)23層は十分満足する高温強度を具備しないものとなり、さらに工具基体における結合相形成成分の硬質被覆層中への拡散侵入を満足に防止することができない従来被覆サーメット工具1〜13においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、かつ摩耗進行も相対的に速くなることから、比較的短時間で使用寿命に至ることが明らかである。
【0033】
上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される高速断続切削でも硬質被覆層がすぐれた耐チッピング性および耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【0034】
【図1】(Al,Cr)23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。
【図2】(Al,Cr)23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。
【図3】相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。
【図4】本発明被覆サーメット工具9の改質(Al,Cr)23層の構成原子共有格子点分布グラフである。
【図5】従来被覆サーメット工具8の従来(Al,Cr)23層の構成原子共有格子点分布グラフである。
【出願人】 【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
【出願日】 平成18年6月27日(2006.6.27)
【代理人】 【識別番号】100076679
【弁理士】
【氏名又は名称】富田 和夫

【識別番号】100094824
【弁理士】
【氏名又は名称】鴨井 久太郎

【識別番号】100139240
【弁理士】
【氏名又は名称】影山 秀一


【公開番号】 特開2008−6511(P2008−6511A)
【公開日】 平成20年1月17日(2008.1.17)
【出願番号】 特願2006−176172(P2006−176172)