トップ :: B 処理操作 運輸 :: B21 本質的には材料の除去が行なわれない機械的金属加工;金属の打抜き

【発明の名称】 鍛造工程設計方法
【発明者】 【氏名】柿本 英樹

【氏名】野▲崎▼ 孝彦

【氏名】藤田 和夫

【要約】 【課題】例えば一体型クランク軸を成形する場合に、鍛造荷重とアーム部の角部余肉の許容値を同時に満たす素材形状および金型形状などの影響因子の最適条件を、簡便な手法で決定できる鍛造工程設計方法を提供することである。

【解決手段】鍛造工程に影響する因子を4因子以上抽出するステップ1(S10)と、目標項目を決定するステップ2(S20)と、抽出した因子を少なくとも3水準ずつ決定するステップ3(S30)と、実験計画表を作成するステップ4(S40)と、実験計画表に基づいた条件で変形解析を行うステップ5(S50)と、変形解析結果を感度に変換するステップ6(S60)と、変換した感度を用いて目標項目の目標値mを満足するように指数Sを算出し、決定すべき影響因子Aの感度を算出するステップ7(S70)と、算出した感度を用いて目標値mを満足する工程値(設定値)求めるステップ8(S80)から、鍛造工程を決定するようにした。
【特許請求の範囲】
【請求項1】
鍛造工程に影響する因子Aを4因子以上抽出するステップ1と、目標項目を決定するステップ2と、前記の抽出した影響因子Aをそれぞれ少なくとも3水準ずつ設定するステップ3と、実験計画表を作成するステップ4と、この実験計画表に基づいた条件で変形解析を行うステップ5と、変形解析結果を感度に変換するステップ6と、この感度を用いた以下の式(1)および式(2)により、前記目標項目の目標値mを満足させるように指数Sを算出し、決定すべき影響因子Aの感度を算出するステップ7と、各影響因子Aの感度を用いて前記目標値mを求めるステップ8から、鍛造工程を決定するようにした鍛造工程設計方法。
m=10**(S/20)------------------------------------(1)
S=Σ(Ai(j))−(n−1)×T------------------------(2)
ここで、Ai(j):水準jにおける影響因子Aiの感度(i=1〜n、n:影響因子Aの抽出数(n≧4))、T:影響因子の感度Ai(j)の総平均値、である。また、式(1)で**はべき乗を示す。
【請求項2】
前記感度を水準間で補間して算出し、前記目標値mを求めるようにした請求項1に記載の鍛造工程設計方法。
【請求項3】
前記ステップ5の変形解析で、内部空隙閉鎖指数Pqを算出するようにした請求項1または2に記載の鍛造工程設計方法。
【請求項4】
前記鍛造工程に影響する因子Aとして、素材形状、素材体積、素材温度分布、金型形状、金型送り、変形速度および素材と金型間の摩擦係数の中から、4因子以上抽出するようにした請求項1から3のいずれかに記載の鍛造工程設計方法。
【請求項5】
前記鍛造工程が強圧下鍛錬工程である請求項1から4のいずれかに記載の鍛造工程設計方法。
【請求項6】
前記目標項目として内部空隙閉鎖指数Pqを選択するようにし、鋼種ごとに決められた目標値mを満たすようにした請求項4または5に記載の鍛造工程設計方法。
【請求項7】
前記鍛造工程が一体型クランク軸の鍛造工程である請求項1または2または4に記載の鍛造工程設計方法。
【請求項8】
前記目標項目として、鍛造荷重およびアーム角部余肉を選択するようにした請求項4または7に記載の鍛造工程設計方法。
【発明の詳細な説明】【技術分野】
【0001】
この発明は、船舶や陸上発電機などの大型・中速ディーゼル機関に使用される一体型クランク軸の素材や金型などの最適形状を、また前記一体型クランク軸、推進軸およびこれらの軸を接続する中間軸や圧延用ロール、成形用鍛造金型、プラスチック用金型等の大型鍛造品の素材となる鋼塊の鍛造(鍛錬)工程における圧下率などの最適加工条件を、品質工学手法を活用して予測する鍛造工程設計方法に関する。
【背景技術】
【0002】
舶用や発電機用などに使われているディーゼル機関用クランク軸には,一体型クランク軸と組立型クランク軸がある。その中でも中小型のディーゼル機関には一体型クランク軸が用いられており,その製造方法としてはRR鍛造法,TR鍛造法,多軸プレスによる方法などが知られている。このうち、クランク軸をCGF(Continuous Grain Flow) 鍛造する方法として、広く知られているRR鍛造方法は、1回の鍛造で1気筒分のジャーナル軸、ピン軸、アーム部を作る鍛造方法であり、このRR鍛造法に用いられるRR鍛造装置の概要を図7(a)〜(c)に示す。図7(a)は素材を把持した成形開始時点の状態を、図7(b)はアーム部を予備圧縮するアプセット成形工程を、図7(c)はピン部の成形とアーム部の横圧縮を同時に行なうオフセット工程を示している。このRR鍛造装置は、主プレス(図示省略)の圧下に伴うクロスヘッド1の圧下力Pを、傾斜摺動板2を介して、把持ダイス4を備えた一対の摺動台3に伝達させ、この圧下力Pの水平方向の分力Fの作用により、部分加熱された丸棒状素材(以下素材と記す)5のアーム部6を軸方向に圧縮すると共に、クロスヘッド1に連結された上ポンチ7にて素材5のピン部8をその軸に直角方向に押し下げて、素材5の単位クランクスロー部を成形する装置構成となっている。
【0003】
また、把持ダイス4は、クロスヘッド1の両側に設けたダイス押えシリンダ9により一定の把持圧力を付与される。そして、上ポンチ7は、ポンチシリンダ(図示省略)を介してクロスヘッド1に連結され、その下方には、アンビルシリンダ(図示省略)を介して台盤(図示省略)に連結された下ポンチ10が設けられている。成形過程における素材5のピン部8は、これらの上下ポンチ7、10により上下から一定圧力で把持されている。
【0004】
また、上ポンチ7の上端および下ポンチ10の下端には、クロスヘッド1の下面1aおよび台盤の上面に当接して退没程度を規定する拡径ストッパ7a、10aが設けられ、この拡径ストッパ7a、10aにより上下ポンチ7、10はクランク素材5のピン部8を把持して限定された範囲で昇降するようになっている。
【0005】
上記従来のRR鍛造装置によるクランク軸の成形方法を、さらに図8から図10を参照して概略説明する。まず、図7(a)に示したように、素材5のジャーナル部11を一対の把持ダイス4、4にて把持し、ピン部8を上下ポンチ7、10にて把持する。次に、クロスヘッド1の圧下により、傾斜傾動板2を介して一対の摺動台3を内側に駆動し、図8に模式的に示すように、アーム部6の予備圧縮を行なう(アプセット工程)。アプセット工程で、所定量の予備圧縮を行った後に、上ポンチ7をクロスヘッド1の圧下動に直動して圧下させ、図9に模式的に示すように、横圧縮を行ないながらピン部8の押し下げを行う(オフセット工程)。
【0006】
このように、RR鍛造装置によるクランク軸の成形方法では、アーム部6の予備圧縮を行なうアプセット工程と、横圧縮を行ないながらピン部8の押し下げを行なうオフセット工程のオフセット工程の二工程からなる成形が実施される。
【0007】
このRR鍛造方法では、上述のように、変形挙動は横圧縮(アーム部の成形(アプセット成形))とポンチによる偏芯(ピン軸の成形(オフセット成形))の2種類があり、プレス挙動や、バリの発生や金型充満状態など素材の変形挙動が複雑であり、鍛造工程設計を行うためには豊富な経験や知識を必要とする。一方、工程設計者の個人差をなくし、系統的な歩留まり向上を行うためには定量的な指標に基づく工程設計を行っていくことが必要である。
【0008】
このような定量的な指標に基づいた工程設計方法として、本発明者は、特願2005−342373号において、変形解析技術を用いることにより、工程設計者間の差をなくして、短期間に目標形状を実現できる汎用的な鍛造工程設計手法を用いた一体型クランク軸の成形方法を提案し、同様に、経験やノウハウに頼ることなく、適切なクランク軸鍛造体の形状を定量的に設計することが可能な金型形状決定方法等を開示した(特許文献1参照)。
【特許文献1】特開2006−218502号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
前記一体型クランク軸は、近年大型化が進んでおり、大型化するに伴い、金型拘束を強化した型鍛造に近い状態ではプレス力量不足となるが、アーム部カウンターウエート側でアーム角部の余肉は確保できる。一方、金型拘束を緩めて自由変形に近い状態とした場合では、横圧縮を行ないながらピン部8の押し下げを行う(オフセット工程)という、圧縮しながら偏芯させるRR鍛造特有の変形挙動のため、圧縮によりバルジ形状となった部分6aがピン軸8の偏芯により引きつられるように変形し(図8、図9参照)、特にアーム角部(図10(○印部)参照)で余肉が少なくなり、欠肉が生じやすくなる。このように、相反する事柄に対して素材形状および金型形状を同時に予測し、一体型クランク軸の所望スペックを満足するように、これらの形状を設計する必要がある。
【0010】
しかし、特願2005−342373号において提案した一体型クランク軸の成形方法では、変形解析技術を用いて、目標製品形状からの欠肉の有無の調査および鍛造荷重と許容荷重との比較により、主に素材形状および機械加工代を調節・決定する鍛造工程設計手法を用いた成形方法である。また、特開2006−218502号公報において開示した金型形状決定方法は、仕様等に基づいて、クランク軸鍛造体(素材)の仮形状を定めて、成形荷重を算出して鍛造装置で耐え得る成形荷重内で金型形状を決定した後、素材の形状(丸鋼の長さ)を決定する方法である。上述のように、金型形状および素材形状が変わると角部余肉(欠肉状態)が変化するため、前記の鍛造工程設計手法を用いた成形方法や金型形状決定方法では、金型形状に大きく依存する鍛造荷重(成形荷重)と角部余肉状態(欠肉状態)の双方の基準を同時に満たすように素材形状を決定することができない。
【0011】
一方、上記一体型クランク軸には、組立型クランク軸と同様に、高強度化および高品質化が求められ、内部品質にも十分配慮する必要がある。このため、前記クランク軸、推進軸およびこれらの軸を接続する中間軸や圧延用ロール、成形用鍛造金型、プラスチック用金型等の大型鍛造品の素材となる鋼塊に対して、その中心部の空隙等の欠陥を消滅させるために、熱間鍛錬が施される。このような大型鍛造品用の鋼塊の熱間鍛錬の鍛造処理においては、中心部欠陥を消滅させるための、素材形状や金敷形状および圧下率等の最適加工条件を、効率よく決定する工程設計方法がとくに望まれる。
【0012】
そこで、この発明の課題は、例えば、一体型クランク軸などを成形する場合に、鍛造荷重と角部余肉の双方の基準を同時に満たす素材形状および金型形状など、鍛造工程に影響する複数の因子を、また、大型鍛造品用の鋼塊の鍛錬や内部品質の向上を目的とした鍛造を行なう場合に、素材形状や圧下率など、鍛造工程に影響する複数の因子を、簡便な手法を用いて定量的に決定することができる鍛造工程設計方法を提供することである。
【課題を解決するための手段】
【0013】
前記の課題を解決するために、この発明では以下の構成を採用したのである。
【0014】
請求項1に係る鍛造設計方法は、鍛造工程に影響する因子Aを4因子以上抽出するステップ1と、目標項目を決定するステップ2と、前記の抽出した影響因子Aをそれぞれ少なくとも3水準ずつ設定するステップ3と、実験計画表を作成するステップ4と、この実験計画表に基づいた条件で変形解析を行うステップ5と、変形解析結果を感度に変換するステップ6と、この感度を用いた以下の式(1)および式(2)により、前記目標項目の目標値mを満足させるように指数Sを算出し、決定すべき影響因子Aの感度を算出するステップ7と、各影響因子Aの感度を用いて前記目標値mを求めるステップ8から、鍛造工程を決定するようにした鍛造工程設計方法である。
m=10**(S/20)------------------------------------(1)
S=Σ(Ai(j))−(n−1)×T------------------------(2)
ここで、Ai(j):水準jにおける影響因子Aiの感度(i=1〜n、n:影響因子Aの抽出数(n≧4))、T:影響因子の感度Ai(j)の総平均値、である。
【0015】
このように、実験計画表(直交表)を用いた品質工学的手法によれば、上記各影響因子についての少数の水準の組み合わせの変形解析で、各影響因子についての総当りの変形解析によるのと同等効果が得られ、算出した各影響因子の感度に基づいて、決定すべき影響因子の最適条件を求めることができる。それによって、鍛造工程における各影響因子の設定値(設計値)を簡便かつ定量的に決定することができる。
【0016】
請求項2に係る鍛造設計方法は、前記感度を水準間で補間して算出し、前記目標値mを求めるようにした鍛造工程設計方法である。
【0017】
上記式(2)で求まる指数Sから算出された決定すべき影響因子の感度Ai(j)が、上記ステップ6で変換して求めた、決定すべき影響因子の各水準の感度に一致しない場合には、各水準間を直線または2次式等で補間して、決定すべき影響因子の最適条件を決定することができる。なお、前記指数Sから算出された感度Ai(j)が、前記各水準の感度の範囲外にあるときは、各水準の感度を直線または2次式等で外挿して最適条件を決定することができる。
【0018】
請求項3に係る鍛造工程設計方法は、前記ステップ5の変形解析で、内部空隙閉鎖指数Pqを算出するようにした鍛造工程設計方法である。
【0019】
上記内部空隙閉鎖指数Pqは、以下の式(3)で定義することができる。
Pq=∫0εf (σ/σeq)dεeq Σ(σ/σeq)Δεeq ------(3)
ここで、σ:静水応力、σeq:相当応力、εeq:相当ひずみ、εf:最終ひずみ、である。式(1)で表される内部空隙閉鎖指数Pqは、被鍛錬材(鋼塊)の内部すなわち中心部の空隙欠陥の圧着に必要な圧縮エネルギを評価する指数である。したがって、鍛造(鍛錬)工程において、前記空隙欠陥が消滅する加工条件を、算出した内部空隙閉鎖指数Pqを指標として、決定することができる。
【0020】
請求項4に係る鍛造工程設計方法は、前記鍛造工程に影響する因子Aとして、素材形状、素材体積、素材温度分布、金型形状、金型送り、変形速度および素材と金型間の摩擦係数の中から、4因子以上抽出するようにした鍛造工程設計方法である。
【0021】
請求項5に係る鍛造工程設計方法は、前記鍛造工程が強圧下鍛錬工程である鍛造工程設計方法である。
【0022】
上記鍛造工程設計方法によれば、前記一体型クランク軸等の大型鍛造品用鋼塊の鍛造工程、すなわち強圧下鍛錬工程における素材形状や圧下率など、鍛造工程に影響する複数の因子を定量的に決定することができる。
【0023】
請求項6に係る鍛造工程設計方法は、前記目標項目として内部空隙閉鎖指数Pqを選択するようにし、この内部空隙閉鎖指数Pqが鋼種ごとに決められた目標値mを満たすようにした鍛造工程設計方法である。
【0024】
上記内部空隙閉鎖指数Pqが目標値mを満たす、すなわち目標値m以上になるように前記影響因子を定量的に決定することにより、前記空隙欠陥が消滅する加工条件を選択することができる。
【0025】
請求項7に係る鍛造設計方法は、前記鍛造工程が一体型クランク軸の鍛造工程設計方法である。
【0026】
請求項8に係る鍛造工程設計方法は、前記目標項目として、鍛造荷重およびアーム角部余肉を選択するようにした鍛造工程設計方法である。
【発明の効果】
【0027】
この発明では、品質工学的手法を用いて、鍛造工程での各影響因子についての少数の水準の組み合わせの変形解析で、各影響因子の感度を算出し、この算出した感度に基づいて決定すべき影響因子の最適条件を求めるようにしたので、例えば、前記鍛造工程が一体型クランク軸の鍛造工程の場合、鍛造荷重やアーム部の角部余肉などの目標項目に対する影響度合いが明確となり、かつ、前記鍛造荷重やアーム角部余肉などの目標値を同時に満たす素材形状および金型形状などの鍛造工程における各影響因子の設定値を簡便かつ定量的に導出することができる。また、前記鍛造工程が一体型クランク軸などの大型鍛造品用鋼塊の鍛錬工程の場合、目標項目の内部空隙閉鎖指数Pqが目標値を満たすように、素材形状や圧下率などの各影響因子の設定値すなわち加工条件を簡便かつ定量的に導出することができる。
【0028】
さらに、算出した決定すべき影響因子の各水準の感度を1次式(直線)または2次式などで定式化し、必要に応じて水準間での補間を行なうことによりその最適値を求め、算出した他の各影響因子の感度も用いて、鍛造荷重やアーム角部余肉などの大きさを予測することも可能となる。
【発明を実施するための最良の形態】
【0029】
以下に、この発明の実施形態を添付の図1から図6に基づいて説明する。
【0030】
図1は、実施形態の鍛造工程設計方法の流れを、一例として、一体型クランク軸の鍛造工程について示したものである。まず、ステップ1では、素材体積、素材形状、金型形状、金型送り、変形速度、素材温度、素材温度分布および素材と金型間の摩擦係数などの、鍛造工程に影響する因子Aを4因子以上、例えば、素材体積(A1)、素材形状(A2)、金型形状(A3)、素材温度(素材温度分布)(A4)の4因子(n=4)を抽出する(S10)。次に、ステップ2では、例えば、前記鍛造工程における鍛造荷重およびアーム部の角部余肉を目標項目として決定する(S20)。ステップ3では、前記抽出した4因子について、表1に示すように、少なくとも3水準の値をそれぞれ設定する(S30)。表1で、A1:素材体積100%は、一体型クランク軸の製品体積に所定の機械加工代体積を加えたときの素材体積である。A2:素材形状(L/D)のLは素材長さを、Dは素材直径をそれぞれ示す。A3:金型形状については、図2に示すように、水準1は、アーム部側面の拘束が最も強い密閉鍛造を、水準2は、側部金型14と下部金型15aとの合わせ面に若干の隙間を設けて水準1の場合よりもアーム部側面の拘束をやや緩くした型鍛造を、水準3は、側部金型1と下部金型2aとの合わせ面に若干の隙間を水準2の場合よりも大きくして、アーム部側面の拘束をさらに緩くした型鍛造を、それぞれ示す。このように、水準1から水準3にかけて、金型側面での拘束が緩くなるように設定した(側部余肉G1<G2<G3)。前記アーム角部余肉17は、図2に矢印で示した、アーム部の製品形状16aと鍛造仕上がり形状16bの自由曲面との最短距離を示す。
【0031】
【表1】


【0032】
【表2】


【0033】
ステップ4では、前記ステップ1(S10)で抽出した4つの影響因子A1〜A4と、ステップ3で、これらの影響因子A1〜A4についてそれぞれ決定した3水準について、表2に示すように、決定すべき影響因子として、A1:素材体積(%)を選定して実験計画表(直交表)を作成する(S40)。そして、ステップ5では、この実験計画表各No.の影響因子A1〜A4の水準に基づいて、変形解析手段(3次元変形解析ソフト)を用いて変形解析を行う(S50)。表2中の数字は、表1に記載した水準j(j=1〜3)を示す。
【0034】
ステップ6では、前記変形解析の結果から、目標項目の鍛造荷重および角部余肉に対する影響因子A1〜A4の感度を、タグチメソッド(非特許文献1参照)を用いて算出する(S60)。この影響因子A1〜A4の感度の算出は次のようにして行なう。すなわち、表2に示した実験計画表の各No.の鍛造条件での変形解析で得られた鍛造荷重および角部余肉の結果から、各No.について、表2に示すように、それぞれの目標項目(鍛造荷重および角部余肉)の感度を算出する。ここで、感度は、各鍛造条件(No.1〜No.9;各影響因子の組合わせ)が目標項目に及ぼす影響度を定量的に示す特性値で、前記変形解析で得られた値を、誤差因子分を除いてデシベル(db)表示に置き換えたものである。そして、No.1〜No.9の各感度は、このNo.1〜No.9のアーム角部余肉データの平均値に対するバラツキ(変動)を表すものである。次に、例えば、影響因子A1(素材体積(%))の水準1の感度は、表2で、影響因子A1の水準が1のNo.1〜No.3の鍛造荷重および角部余肉の感度をそれぞれ平均することにより求めることができる。同様に、水準2の感度はNo.4〜No.6の鍛造荷重および角部余肉の感度を、水準3の感度はNo.7〜No.9の鍛造荷重および角部余肉の感度をそれぞれ平均することにより求めることができる。影響因子A2(素材形状)、影響因子A3(金型形状)および影響因子A4(温度分布)についても、各水準1〜3の感度は、表2の、それぞれの水準に対応するNo.の鍛造荷重および角部余肉の感度(1水準あたり3つの感度)をそれぞれ平均することにより、求めることができる。影響因子A1〜A4のこれらの感度は、前記目標項目に対する個別(因子ごと)の影響度を定量的に示す特性値で、表2のNo.1〜No.9のアーム角部余肉のデータの平均値に対するバラツキ(変動)を表すものである。表3および表4は、このようにして求めた、目標項目のアーム角部余肉および鍛造荷重についての影響因子A1〜A4の各水準(j=1〜3)に対する感度を示す要因効果表である。図3(a)および(b)は、各影響因子について、これらの感度を各水準に対してプロットした要因効果図である。
【非特許文献1】渡部義晴著:「実践タグチメソッド」(日科技連;2006/6月)、P.19
【0035】
【表3】


【0036】
【表4】


【0037】
前記アーム角部余肉は生産性に影響するため、本実施形態では、アーム角部余肉10mm以上を必須条件とした。したがって、ステップ7では、アーム角部余肉10mmを満たす、決定すべき影響因子:素材体積(%)の最適値を求めるために、表3から、前記決定すべき影響因子以外の影響因子A2:素材形状、影響因子A3:金型形状、および影響因子A4:温度分布(℃)の感度を選択する。すなわち、素材形状(L/D)はL/D=1.4が適正値と考えられるため、影響因子A2については、水準2に対する感度A2(2)(=25.921)を選択する。金型形状は、アーム部側面の拘束が強い程、この側面の余肉が少なく歩留が向上してコストダウンにつながるため、影響因子A3については、水準1(表3参照)に対する感度A3(1)(=21.730)を選択する。影響因子A4の素材温度分布(℃)については、温度実績値から、水準2に対する感度A4(2)(=25.312)を選択する。アーム角部余肉の目標値mの下限定値は10mmとしたので、前記の式(1)から、
10=10**(S/20)--------------------------------(1a)
式(1a)から指数Sを逆算すると、S=20となる。前記の式(2)における影響因子A1〜A4の感度の総平均値Tは、T=24.966となり、式(2)から、決定すべき影響因子:素材体積の感度A1(j)は、
A1(j)=S+3×T−(A2(2)+A3(1)+A4(2))
-------------------(2a)
式(2a)から、A1(j)=22.259となる(S70)。ステップ8では、このようにして決定した影響因子A1の感度A1(j)は、水準1の感度A1(1)(=19.245)と水準2の感度A1(2)(=26.599)の間にあるため、これらの水準間で補間して、前記感度A1(j)(=22.599)に対応する素材体積を求めると、素材体積の最適条件(最適値)として、98.5%が得られる。このようにして、品質工学的手法を用いて、目標の角部余肉量を満たす、素材体積を含む素材形状および金型形状を決定することができ、上述のように、各影響因子A1〜A4について選択・決定した感度に対応する水準または水準間の値が鍛造工程における設計値、すなわち設定値となる(S80)。同様に、鍛造荷重についても、図3(a)に示した各影響因子A1〜A4の感度および式(1)、式(2)から、目標鍛造荷重を満たす素材体積を得ることができるが、前述のように、アーム角部余肉量は生産性に影響するため、本実施形態では、アーム角部余肉10mm以上を必須条件として、決定すべき影響因子の素材体積を求めた。
【0038】
前記アーム角部余肉量の必須条件から求めた素材体積98.5%に対応する、鍛造荷重についての感度A1(j)は、図3(a)から、A1(j)=75.185となる。前述のように、図3(b)からアーム角部余肉10mmを満たす、影響因子A2:素材形状、影響因子A3:金型形状および影響因子A4:温度分布(℃)の水準は、それぞれ、水準2(A2)、水準1(A3)および水準2(A4)であるから、前記鍛造荷重についての影響因子A2〜A4の感度は、A2(2)=77.6979、A3(1)=77.10、およびA4(2)=77.1716となる。これらの感度A1(j)、A2(2)、A3(1)、およびA4(2)を上記の式(2)に代入すると、鍛造荷重についての指数Sを求めることができる。この指数Sを上記の式(1)に代入すると、鍛造荷重の目標値mは、m=5744tonとなり、鍛造荷重の目標範囲5500〜6000tonを満足している。
【0039】
表5は、上記の品質工学的手法で得られた影響因子A1〜A4の最適条件に基づいて、変形解析手段(3次元変形解析ソフト)を用いた解析により得られた鍛造荷重およびアーム角部余肉を、上記品質工学的手法により得られた値と比較したものである。
【0040】
【表5】


【0041】
表5から、上記の品質工学的手法を用いて得られた計算値は、変形解析手段を用いた解析結果とほぼ一致し、本発明の鍛造工程設計方法により、鍛造荷重およびアーム角部余肉を同時に満足する素材形状および金型形状を決定して設計することが可能であることが確認された。
【0042】
図4は、図1に示した鍛造工程設計の流れを、前記大型鍛造品用鋼塊の熱間鍛錬に適用する場合の、強圧下鍛錬工程を模式的に示したものである。素材18は、例えば、菊型状鋼塊をまず圧縮した後、90°回転し、荒鍛造によって直方体状に成形される。この素材18は、一例として、幅W×長さ(奥行き)Lの平型の上金敷19、および幅W×長さ(奥行き)Lがいずれも素材18の幅×長さ(奥行き)よりも大きい平型である下金敷20で、矢印Aで送り方向(鍛造方向)を示した所要の送り量Bごとに、その全長にわたって、表面S1側が押圧される強圧下を受ける。さらに圧下が必要な場合、表面S1側の鍛造が終了後、素材18を、マニピュレータ等のハンドリング装置(図示省略)により180度回転させて、裏面S2側が同様に、素材全長にわたって、上金敷19で押圧される強圧下を受け、必要に応じて、この表面S1側および裏面S2側の強圧下工程が繰り返される。
【0043】
図1に示した実施形態の鍛造工程設計方法の流れを、図4に示した一体型クランク軸用鋼塊の強圧下鍛錬工程について記載すれば、以下のようになる。まず、ステップ1では、鍛造工程に影響する因子Aを4因子、例えば、素材形状(A1;縦×横寸法)、金型形状(A2)、圧下率(A3)、素材温度分布(A4)の4因子(n=4)を抽出する(S10)。次に、ステップ2では、例えば、強圧下鍛錬工程における前記内部空隙閉鎖指数Pqを目標項目として決定する(S20)。ステップ3では、前記抽出した4因子について、表6に示すように、少なくとも3水準の値をそれぞれ設定する(S30)。表6で、A1:素材形状は、鋼塊の断面寸法(平均の縦寸法×横寸法)である。A2:金敷形状の上下は、図4に記載した上金敷19および下金敷20を示し、500平−平(800平−平)は、上下の金敷19、20a(図5(b)参照)が、それぞれ幅W×長さLが500(800)mm×2500mmの平型を示し、また、500平−トーフは、上金敷19が500mm×2500mmの平型を示し、下金敷20が図4に記載したトーフ金敷を示す。A3:圧下率の×2は、表面S1側の鍛造および裏面S2側の鍛造と、強圧下鍛造を2回行なうことを示す。A4:温度分布は、素材(鋼塊)の中心〜表面の温度を示し、変形解析では、温度解析により求めた中心〜表面間の温度分布(断面内温度分布)を用いた。
【0044】
【表6】


【0045】
ステップ4では、ステップ1(S10)で抽出した4つの影響因子A1〜A4と、ステップ3で、これらの影響因子A1〜A4についてそれぞれ決定した3水準について、決定すべき影響因子として、A3:圧下率(%)を選定して、表2に示したように、実験計画表(直交表)を作成する(S40)。そして、ステップ5では、この実験計画表の各No.の影響因子A1〜A4の水準に基づいて、変形解析手段(3次元変形解析ソフト)を用いて変形解析を行う(S50)。表2中の数字は、表1に記載した水準j(j=1〜3)を示す。
【0046】
ステップ6では、前記変形解析の結果から、目標項目の内部空隙閉鎖指数Pqに対する影響因子A1〜A4の感度を、前記の一体型クランク軸の鍛造工程の場合と同様に、品質工学的手法(タグチメソッド(非特許文献1参照))を用いて算出する(S60)。表2に示した実験計画表の各No.の強圧下鍛錬条件での変形解析で得られた内部空隙閉鎖指数Pqは、強圧下鍛錬後の素材18(図4参照)の中心軸に沿って、前記式(3)によって算出した内部空隙閉鎖指数Pqの分布における最小値である。この変形解析結果から、各No.について、表2に示したように、内部空隙閉鎖指数Pqの感度を算出する。ここで、感度は、各鍛造条件(No.1〜No.9;各影響因子の組合わせ)が目標項目に及ぼす影響度を定量的に示す特性値で、No.1〜No.9の各感度は、このNo.1〜No.9の内部空隙閉鎖指数Pqのデータの平均値に対するバラツキ(変動)を表すものである。平均値を表す。次に、前記鍛造工程におけるアーム角部余肉や鍛造荷重についての場合と同様にして、例えば、影響因子A1(素材形状)の水準1の感度は、表2で、影響因子A1の水準が1のNo.1〜No.3の内部空隙閉鎖指数Pqの感度をそれぞれ平均することにより求めることができる。水準2および水準3の感度、影響因子A2〜A4の、それぞれの水準1〜水準3の感度についても、表2の対応するNo.の内部空隙閉鎖指数Pqの感度を平均することにより、それぞれ求めることができる。影響因子A1〜A4のこれらの感度は、前記目標項目に対する影響因子ごとの影響度を定量的に示す特性値で、表2のNo.1〜No.9の内部空隙閉鎖指数Pqのデータの平均値に対するバラツキ(変動)を表すものである。表7は、このようにして求めた、目標項目の内部空隙閉鎖指数Pqについての影響因子A1〜A4の各水準(j=1〜3)に対する感度を示す要因効果表である。図6は各影響因子について、これらの感度を各水準に対してプロットした要因効果図である。
【0047】
【表7】


【0048】
上記鋼塊の強圧下鍛錬工程では、内部空隙閉鎖指数Pqが0.23以上で内部空隙が閉鎖することが、鍛錬実績および変形解析結果から明らかになっている。したがって、目標値mを、m=0.23とすることができる。この内部空隙閉鎖指数Pqの目標値m=0.23を満たす、決定すべき影響因子A3:圧下率(%)の最適値を求めるために、図6から、決定すべき影響因子A3以外の影響因子A1:素材形状、影響因子A2:金敷形状および影響因子A4:素材温度分布(℃)の感度を選択する。すなわち、素材形状は1600×1600mm角(縦横比=1)が適正値と考えられるため、影響因子A1については、水準1に対する感度A1(1)(=-19.14)を選択する。金型形状は、800平−平を選択すると、影響因子A2については、水準3に対する感度A2(3)(=-17.58)を選択する。影響因子A4の素材温度分布(℃)については、温度実績値から、水準3に対する感度A4(3)(=-14.42))を選択する。内部空隙閉鎖指数Pqの目標値m=0.23としたので、前記の式(1)から、
0.23=10**(S/20)--------------------------------(1b)
式(1a)から指数Sを逆算すると、S=-12.765となる。前記の式(2)における影響因子A1〜A4の感度の総平均値Tは、T=-17.05となり、式(2)から、決定すべき影響因子:圧下率(%)の感度A3(j)は、
A3(j)=S+3×T−(A1(1)+A2(3)+A4(3))
-------------------(2b)
式(2b)から、A3(j)=-12.78となる(S70)。ステップ8では、このようにして決定した影響因子A3の感度A3(j)は、水準2の感度A3(2)(=-16.22)と水準3の感度A3(3)(=-12.40)の間にあるため、これらの水準間で補間する。図6から、影響因子A3の圧下率(%)と感度は、ほぼ線形の関係にあるため、直線近似すると、以下の式(4)となる。
Y(感度)=1.014×X(圧下率(%))−32.263----(4)
式(4)から、感度A3(j)=-12.78に対する圧下率(%)は、19.2%となる。したがって、影響因子A3(圧下率(%))の最適値は19.2%となって、圧下率(%)については、19.2%×2回の工程を選択することができる。
このようにして、品質工学的手法を用いて、目標の内部空隙閉鎖指数Pqを満たす、圧下率(%)を素材形状および金敷形状とともに決定することができ、上述のように、各影響因子A1〜A4について選択・決定した感度に対応する水準または水準間の値が強圧下鍛錬工程における設計値、すなわち設定値となる(S80)。
【実施例】
【0049】
影響因子A1(水準1)の素材形状(断面平均寸法)が1600×1600mm角で、影響因子A4(水準3)の温度分布1200〜900℃の低合金鋼の鋼塊を、影響因子A2(水準3)の800平−平の金敷形状で、影響因子A3の圧下率19.5%および18%でそれぞれ2回鍛造(表面側および裏面側を各1回鍛造、図4参照)を行なった後、内部欠陥(空隙)の有無を、超音波探傷試験(UT)により調査した。調査結果を表8に示す。
【0050】
【表8】


【0051】
圧下率の最適値19.5%で2回鍛造を行なった場合には空隙は消滅して、探傷試験UTにより、内部欠陥なしと判定され、本発明の効果が確認された。一方、前記内部空隙閉鎖指数の目標値m=0.23を満たさない圧下率18%で2回鍛造を行なった場合には、内部欠陥ありと判定され、強圧下鍛錬工程で内部欠陥は消滅しなかった。なお、強圧下鍛錬工程で鍛造される鋼塊は、低合金鋼に限らず、例えば、炭素鋼などの他の材質のものも含まれる。この場合、材質によって目標値mも異なる。
【図面の簡単な説明】
【0052】
【図1】この発明の実施形態の鍛造工程設計方法の流れを示す説明図である。
【図2】アーム部の金型水準を示す説明図である。
【図3】(a)鍛造荷重について、各影響因子の感度を示す説明図である。(b)角部余肉について、各影響因子の感度を示す説明図である。
【図4】強圧下鍛錬工程を模式的に示す説明図である(平金敷−トーフ金敷)。
【図5】(a)強圧下鍛錬工程での金型配置を示す説明図である(平金敷−トーフ金敷)。(b)強圧下鍛錬工程での金型配置を示す説明図である(平金敷−平金敷)。
【図6】内部空隙閉鎖指数Pqについて、各影響因子の感度を示す説明図である。
【図7】(a)RR鍛造装置の説明図(成形開始状態)である。(b)RR鍛造装置による成形工程(アプセット工程)の説明図である。(c)RR鍛造装置による成形工程(オフセット工程)の説明図である。
【図8】RR鍛造装置による成形工程の説明図である。
【図9】RR鍛造装置による成形工程の説明図である。
【図10】RR鍛造装置による成形工程説明図である。
【符号の説明】
【0053】
1:クロスヘッド 1a:クロスヘッド下面 2:傾斜傾動板
3:摺動台 4:把持ダイス 5:素材
6:アーム部 7:上ポンチ 7a:拡径ストッパ
8:ピン部 9:ダイス押えシリンダ 10:下ポンチ
10a:拡径ストッパ 11:ジャーナル部 12a:上部ダイス
12b:側部ダイス 13:下部ダイス 14:側部金型
15a:下部金型 15b:上部金型 16a:アーム部製品形状
16b:部鍛造仕上がり形状 17:アーム角部余肉 18:素材
19:上金敷 20、20a:下金敷
【出願人】 【識別番号】000001199
【氏名又は名称】株式会社神戸製鋼所
【出願日】 平成19年8月6日(2007.8.6)
【代理人】 【識別番号】100089196
【弁理士】
【氏名又は名称】梶 良之

【識別番号】100104226
【弁理士】
【氏名又は名称】須原 誠

【識別番号】100131750
【弁理士】
【氏名又は名称】竹中 芳通


【公開番号】 特開2008−110398(P2008−110398A)
【公開日】 平成20年5月15日(2008.5.15)
【出願番号】 特願2007−204535(P2007−204535)