トップ :: B 処理操作 運輸 :: B05 霧化または噴霧一般;液体または他の流動性材料の表面への適用一般

【発明の名称】 空気質成分供給装置
【発明者】 【氏名】前田 学

【氏名】江坂 知久

【要約】 【課題】周囲空気の流れに影響されることなく渦輪を所定の領域に確実に供給すること。

【構成】空気質成分チャンバ120内に空気質成分を供給し終えた後、コイル142に対して駆動電流Iを供給する。これにより、押圧部材132が圧縮部材131を前方に押圧することでこの圧縮部材131が基準位置から圧縮側に変位し、空気質成分チャンバ120内の空気が圧縮され、放出孔110Aから空気質成分を含んだ渦輪Fが乗員3,4に向けて放出されるとともに、渦輪Fの内環を通る直進流STが生成される。
【特許請求の範囲】
【請求項1】
空気質成分を含んだ渦輪を放出し、車内に当該空気質成分を供給する空気質成分供給装置であって、
前記空気質成分を保持する空気質成分チャンバと、
前記空気質成分チャンバから前記渦輪を放出する放出孔と、
前記空気質成分チャンバを圧縮し、前記放出孔から前記渦輪を放出させる圧縮手段とを備え、
前記圧縮手段は、前記放出孔から前記渦輪と前記渦輪の内環を通る直進流とを生成するように作動することを特徴とする空気質成分供給装置。
【請求項2】
前記放出孔から吐出される空気の風速をU、前記放出孔から吐出される空気の吐出時間をT、前記放出孔の開口半径をR、とした場合、パラメータ「U・T/R」が下記範囲に設定されることを特徴とする請求項1に記載の空気質成分供給装置。
1≦「U・T/R」≦5
【請求項3】
前記パラメータ「U・T/R」は、さらに下記範囲に設定されることを特徴とする請求項2に記載の空気質成分供給装置。
1≦「U・T/R」≦π
【請求項4】
前記放出孔から吐出される空気のレイノルズ数は4×10以下とされていることを特徴とする請求項1から請求項3のいずれかに記載の空気質成分供給装置。
【発明の詳細な説明】【技術分野】
【0001】
本発明は、空気質成分を含んだ渦輪を車内に供給する空気質成分供給装置に関し、特に、空気質成分の供給効率を向上させたものに関する。
【背景技術】
【0002】
空気質成分を保持した渦輪を放出する装置として、例えば、特許文献1に記載されているものが知られている。これは、ケース内に保持された芳香成分を含有する空気を圧縮手段で圧縮し、ケースに形成された放出孔から渦輪を放出させる構成とされている。放出孔から放出される渦輪は、円環形状をなしており、当該形状を保持した状態で進行する。この渦輪は、周囲空気との摩擦抵抗が極めて小さいため、遠方まで進行することができる。
【特許文献1】特開2000−176339号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
この渦輪は、周囲空気との摩擦抵抗が小さいため、遠方まで進行することができるものの、周囲空気が流れている場合には、この周囲空気に流されて、本来の進行方向から外れ易くなり、また、周囲空気の流れによって破壊され易いという問題もある。
【0004】
本発明は、上記事情に鑑みてなされたものであって、その目的は、周囲空気の流れに影響されることなく渦輪を所定の領域に確実に供給することができる空気質成分供給装置を提供することである。
【課題を解決するための手段】
【0005】
上記目的を達成するために、請求項1の発明では、空気質成分を含んだ渦輪を放出し、車内に当該空気質成分を供給する空気質成分供給装置であって、空気質成分を保持する空気質成分チャンバと、空気質成分チャンバから渦輪を放出する放出孔と、空気質成分チャンバに保持された空気質成分を圧縮し、放出孔から渦輪を放出させる圧縮手段とを備え、圧縮手段は、放出孔から渦輪と渦輪の内環を通る直進流とを生成するように作動することを特徴としている。
【0006】
請求項1の発明によれば、渦輪の内環を直進流が進行することによって、渦輪は直進流の進行方向に沿って進行する。このため、周囲空気の流れがあったとしても、渦輪が周囲空気に流されにくくなり、所望の方向へ渦輪を確実に進行させることができる。また、渦輪周囲の空気は直進流の進行方向に沿って流れるため、渦輪に対する周囲空気の流れの影響が小さくなり、渦輪が破壊されにくくなる。以上のことから、渦輪は、周囲空気の流れによる影響を受け難くなり、所定の領域に確実に渦輪が供給される。
【0007】
そして、具体的には、請求項2に記載のように、放出孔から吐出される空気の風速をU、放出孔から吐出される空気の吐出時間をT、放出孔の開口半径をR、とした場合、パラメータU・T/Rを下記の範囲に設定する。
1≦U・T/R≦5
【0008】
このパラメータ「U・T/R」は、以下の過程によって導出されたものである。まず、圧縮手段が空気質成分チャンバを圧縮することで放出孔から吐出される空気の空気量Vは、下記数式1により表される。
(数1)
V=U・T・πR
【0009】
一方、吐出された空気によって生成される渦輪の体積Wは、下記数式2により表される。
(数2)
W=2πR・πR
ここで、Rは渦核中心部から渦輪外縁までの距離を示しており、通常は放出孔の開口半径Rと一致している。
【0010】
そして、放出孔から吐出された空気がすべて渦輪となる場合、吐出された空気の摩擦による反作用で、吐出される空気と同体積の外部空気を取り入れて渦輪ができるために、下記数式3が成立する。
(数3)
2V=W
当該数式3を変形すると、「U・T/R=π」となる。
【0011】
即ち、当該パラメータ「U・T/R」は、放出孔から吐出される空気が渦輪生成に寄与する度合いを示したものである。そして、「U・T/R=π」であるときには、上述したように、吐出された空気の空気量Vと同体積の外部空気を取り入れて渦輪が生成されることを意味している。一方、「U・T/R<π」の領域でも、放出孔から吐出された空気及び外部空気を取り入れることにより上記数式2と同一体積の渦輪が生成されるものの、吐出される空気の空気量Vが「U・T/R=π」のときよりも少なくなるため、渦輪内には外部空気が吐出空気よりも多く取り込まれることとなる。ただし、「U・T/R<π」の領域では、パラメータ値の増加に応じて吐出される空気の空気量Vが増加するから、渦輪に含まれる吐出空気はこのパラメータ値に応じて増加することとなる。また、「U・T/R>π」の領域では、放出孔から吐出された空気の一部が渦輪とならずに直進流に含まれることを意味している。
【0012】
一方、パラメータ「U・T/R」が1以下あるいは5以上の場合には、放出孔から吐出される空気の風速・空気量等の関係で、渦輪と直進流とが生成されない。
【0013】
従って、パラメータ「U・T/R」を請求項2に記載のように1以上5以下の範囲に設定することで、放出孔から吐出された空気によって直進流と渦輪とが生成されることとなり、請求項1の効果を得ることができる。
【0014】
そして、望ましくは、請求項3に記載のように、パラメータ「U・T/R」を、さらに下記の範囲に設定する。
1≦U・T/R≦π
【0015】
パラメータ「U・T/R」を、1以上π以下に設定した場合には、吐出された空気がすべて渦輪に閉じ込められるため、空気質成分を効率よく所定の領域に供給することができる。
【0016】
請求項4の発明では、放出孔から吐出される空気質成分のレイノルズ数を4×10以下としたことを特徴としている。
【0017】
放出孔から吐出される空気のレイノルズ数Reは下記数式4により求められる。
【0018】
(数4)
Re=2πUR/ν
ν:空気の動粘性係数 2πR:代表長さ U:代表速度(=風速U) R:開口半径
【0019】
一般に、レイノルズ数Reが4×10以上の場合には、流体が乱流となるため、生成された渦輪が拡散する。従って、本構成のように、放出孔から吐出された空気のレイノルズ数Reを4×10以下とすることで、吐出された空気を層流とし、生成された渦輪を拡散させること無く保持することができる。
【0020】
具体的には、放出孔から吐出される空気の風速Uと、放出孔の開口半径Rとの積「U・R」を0.1以下となるようにすれば良い。
【発明を実施するための最良の形態】
【0021】
<第1の実施形態>
本発明に係る車両用空気質成分供給装置の実施形態について図1ないし図6を参照して説明する。本実施形態の車両用空気質成分供給装置は、自動車1の車内2に備えられた空気質成分放出手段10A〜10Cから所定の空気質成分を含んだ渦輪Fを放出することで、乗員3,4に対して個別に空気質成分を供給するものである。
【0022】
各空気質成分放出手段10A〜10Cは、図1に示すように、乗員3,4に向けて渦輪Fを放出可能な位置に配置されており、このうち、放出手段10Aはインストルメントパネル70内に、放出手段10Bは前席側天井部分に形成されるオーバーヘッドモジュール80内にそれぞれ配置されており、前席乗員3の方向に渦輪Fを放出する。また、放出手段10Cは、後席側天井部に配置されており、後席乗員4に対して渦輪Fを放出する。
【0023】
各空気質成分放出手段10A〜10Cは、図2に示すように、搬送手段30により空気質成分貯留手段20に貯留された空気質成分を受給可能とされている。このうち、空気質成分貯留手段20は、湿度成分、芳香成分等の所定の空気質成分を貯留封入するタンクにより構成されている。また、搬送手段30は、空気質成分貯留手段20と各空気質成分放出手段10A〜10C内の空気質成分チャンバ120(これについては後述する)とを連結する連結チューブ31と、連結チューブ31を開閉するバルブ32と、空気質成分貯留手段20内の空気質成分を空気質成分チャンバ120に搬送する搬送ポンプ33とから構成されている。
【0024】
このうち、バルブ32は後述する制御手段200からの駆動信号に基づいて開閉動作するものであり、これが開状態とされているときには空気質成分貯留手段20内の空気質成分が連結チューブ33に流れ込む。搬送ポンプ33は、同じく制御手段200からの駆動信号を受けて動作するものであって、連結チューブ32内に滞留している空気質成分を空気質供給チャンバ120に送り込む。
【0025】
空気質成分放出手段10A〜10Cは、図3に示すように、筐体110内に、空気質成分を保持する空気質成分チャンバ120と、この空気質成分チャンバ120内の空気を圧縮する圧縮手段130と、圧縮手段130を駆動する駆動手段140と、押圧部材132を支持する支持部材150を備えて構成されている。
【0026】
筐体110は、例えば円筒形状をなしており、前面には渦輪Fが車内2に放出される円形の放出孔110Aが形成されている。筐体110内には、空気質成分を保持し、この空気質成分を含む渦輪Fを放出孔110Aから放出させる空気質成分チャンバ120が形成されている。この空気質成分チャンバ120は、連結チューブ31によって空気質成分貯留手段20と連結されており、バルブ32及び搬送ポンプ33の動作によって空気質成分を受給可能とされている。従って、空気質成分チャンバ120内には、空気質成分を含有する空気が保持される。
【0027】
圧縮手段130は、空気質成分チャンバ120を介して放出孔110Aに対して対向配置され、この放出孔110Aに対して相対変位可能な膜状の圧縮部材131と、圧縮部材131を押圧する押圧部材132とから構成されている。
【0028】
圧縮部材131は、前方視形状が略円形形状をなしており、外周部が筐体110に固定されている。また、外周側にはエッジ部131Aが形成されて、当該圧縮部材131の前後方向への変位が許容されるようになっている。これにより、圧縮部材131は放出孔110Aに対して所定の離間距離を隔てた基準位置(図3中の図示位置)から、空気質成分チャンバ120を押し縮める圧縮側(前方側)に変位可能とされている。従って、圧縮部材131が基準位置から圧縮側に変位することにより、空気質成分チャンバ120内の空気が圧縮され、これによって放出孔110Aから空気質成分を含んだ渦輪Fが放出される。
【0029】
押圧部材132は、円筒形状に形成されており、基端側には後述する駆動手段140を構成するコイル142がらせん状に巻回されているとともに、先端側が圧縮部材131と一体化されている。この押圧部材132の先端側の径は圧縮部材131の径よりも十分に小さくされており、この先端側は圧縮部材131の中心部に一体化されている。
【0030】
駆動手段140は、筐体110に固定されたマグネット141と、このマグネット141と対をなし、押圧部材132に一体化されるコイル142とから構成されている。円柱状に形成されたマグネット141は、前方に突き出した姿勢で筐体110の後面に保持固定されており、押圧部材132の後方側からその内部に進入している。コイル142は、押圧部材132の基端側にらせん状に巻回されていることで、マグネット141を取り巻くように配置されており、後述する制御手段200からの駆動電流Iの供給を受けるようになっている。
【0031】
従って、コイル142に駆動電流Iが供給された場合には、マグネット141が形成する磁界によってローレンツ力が発生し、このローレンツ力によってコイル142に対して前方への付勢力が作用することで、コイル142と一体化された押圧部材132が圧縮部材131の中心部を押圧し、これによって圧縮部材131が基準位置から圧縮側に変位する。また、駆動電流Iが途絶えるとコイル142に対する前方への付勢力が消滅し、押圧部材132とともに圧縮部材131が基準位置へ復帰するようになっている。
【0032】
尚、コイル142に供給される駆動電流Iは、渦輪Fを発生させるに必要な電流波形としており、例えば、台形波電流が供給されるようになっている。また、台形波電流の振幅によって発生するローレンツ力が決定されるため、この台形波電流の振幅によって圧縮部材131の変位量が決定される。
【0033】
支持部材150は、押圧部材132を支持するためのものであり、膜状の部材を蛇腹形状に形成して構成されている。この支持部材150は前方視形状が環状に形成されており、その外周部が筐体110に固定されているとともに、内周部が押圧部材132に固定されている。また、蛇腹状に形成されているため、押圧部材132が変位したとしても内周部が押圧部材132の変位に追従して押圧部材132を継続的に支持することができるようになっている。
【0034】
制御手段200は、図2に示すように、各条件に応じて上述したバルブ32、搬送ポンプ33、及びコイル142に供給する駆動電流Iを制御するものである。例えば、車内2における所定の空気質成分の濃度を検出する検出センサを設け、この検出センサにより検出された空気質成分の濃度に基づいて、バルブ32、搬送ポンプ33、及びコイル142への駆動電流Iを制御することができる。具体的には、検出された空気質成分の濃度が所定濃度以下であるときには、車内2に空気質成分が不足していると判断し、渦輪Fを放出するためにバルブ32を開放して搬送ポンプ33を作動させた後、コイル142に駆動電流Iを供給する。
【0035】
本実施形態の構成は以上であり、続いてその動作について説明する。制御手段200は、渦輪Fを放出するタイミングに合わせて、バルブ32、搬送ポンプ33、及びコイル142への駆動電流Iの制御を行う。即ち、バルブ32を開くとともに搬送ポンプ33作動させて空気質成分チャンバ120内に空気質成分を供給する。空気質成分チャンバ120内に空気質成分を供給し終えた後、コイル142に対して駆動電流Iを供給する。これにより、押圧部材132が圧縮部材131を前方に押圧することでこの圧縮部材131が基準位置から圧縮側に変位し、空気質成分チャンバ120内の空気が圧縮され、放出孔110Aから空気質成分を含んだ渦輪Fが乗員3,4に向けて放出されるとともに、渦輪Fの内環を通る直進流STが生成される。
【0036】
コイル142に供給する駆動電流Iの電流波形は、例により台形波とする。駆動電流Iの立ち上がり電流傾度は、少なくとも渦輪Fの生成が可能な程度の電流傾度としている。また、立ち下がり電流傾度は、空気質成分チャンバ120の膨張に起因する渦輪Fの生成を防止できる電流傾度に設定している。
【0037】
このような駆動電流Iをコイル142に供給することで、圧縮部材131は、図4(A)に示すように変位する。即ち、圧縮部材131が基準位置(0)から圧縮側に変位し、所定の変位位置(L)まで変位する。その後、変位位置(L)から基準位置(0)に復帰する。このとき、圧縮部材131の変位速度(L/T)は駆動電流Iの立ち上がりまたは立ち下がり電流傾度に応じて決定されるとともに、変位位置(L)は駆動電流Iの振幅によって決定される。
【0038】
また、図4(B)に示すように、放出孔110Aにおける吐出空気の風速Uは、圧縮部材131の変位速度(L/T)と放出孔110Aの開口半径Rとの関係によって決定される。本実施形態では、放出孔110Aの開口半径Rを一定としているため、放出孔110Aから吐出される空気の流速Uは、圧縮部材131の変位速度(L/T)によって決定される。また、放出孔110Aから空気が吐出される時間Tは、圧縮部材110Aの変位時間に対応する。さらに、放出孔110Aから吐出される空気量Aは、圧縮部材131の変位位置(L)(基準位置からの変位量)によって決定される。 本実施形態では、風速U、吐出時間T、及び開口半径Rからなるパラメータ「U・T/R」を0から6の範囲で変化させたときの、渦輪Fの到達距離、及び放出孔110Aから0.2m離れた位置での空気質成分の到達率(吐出された空気質成分に対する、到達空気質成分の割合)を実験により求めた。図5は、その実験結果により得られたグラフである。このうち、(A)は到達距離を示したグラフであり、(B)は到達率を示したグラフである。尚、本実験では、開口半径Rを一定として、風速Uと吐出時間Tとを変えることでパラメータ「U・T/R」を0から6の範囲で変更した。
【0039】
ここで、パラメータ「U・T/R」は、以下の過程によって導出されたものであり、図6を参照して説明する。まず、圧縮部材131が空気質成分チャンバ120を圧縮することで放出孔110Aから吐出される空気の空気量Vは、下記数式1により表される。
(数1)
V=U・T・πR
【0040】
一方、吐出された空気によって生成される渦輪の体積Wは、下記数式2により表される。
(数2)
W=2πR・πR
ここで、Rは渦輪Fにおける渦核中心部Cから渦輪外縁までの距離を示しており、通常は放出孔110Aの開口半径Rと一致する。
【0041】
そして、放出孔110Aから吐出された空気の空気量Vがすべて渦輪Fとなる場合には、吐出された空気の摩擦による反作用で、吐出される空気と同体積の外部空気を取り入れて渦輪Fができるために、下記数式3が成立する。
(数3)
2V=W
当該数式3を変形すると、「U・T/R=π」となる。
【0042】
「U・T/R=π」となるときには、上述したように、吐出された空気の空気量Vと同体積の外部空気を取り入れて渦輪Fが生成されることを意味している。一方、「U・T/R<π」の領域でも、放出孔110Aから吐出された空気及び外部空気を取り入れることにより上記数式2と同一体積の渦輪Fが生成されるものの、吐出される空気の空気量Vが「U・T/R=π」のときよりも少なくなるため、渦輪F内には外部空気が吐出空気よりも多く取り込まれることとなる。ただし、「U・T/R<π」の領域では、パラメータ値の増加に応じて吐出される空気の空気量Vが増加するから、渦輪Fに含まれる吐出空気はパラメータ値に応じて増加することとなる。また、「U・T/R>π」の領域では、放出孔110Aから吐出された空気の一部が渦輪Fとならずに、直進流STとなることを意味している。即ち、当該パラメータ「U・T/R」は、放出孔110Aから吐出される空気が渦輪Fの生成に寄与する度合いを示したものであり、無次元数である。
【0043】
図5に示すように、パラメータ「U・T/R」がπ以下の領域では、パラメータ「U・T/R」の増加に伴って渦輪Fの到達距離が増加している。また、空気質成分の到達率についてもパラメータ「U・T/R」の増加に伴って増大する。
【0044】
パラメータ「U・T/R」がπ以下の領域において、当該パラメータ「U・T/R」が増加するということは、風速Uが増大することであり、これによって渦輪Fの進行速度が増大し、到達距離が増加する。また、渦輪Fの進行速度が増大することで、所定位置に到達するまでの時間が短縮され、この結果、渦輪F内に閉じ込められた空気質成分のうち周囲に拡散するものの量が低減される。これにより、パラメータ「U・T/R」をπとしたときが到達距離、到達率ともに最も高くなる。
【0045】
また、パラメータ「U・T/R」がπ以上の領域では、パラメータ「U・T/R」の増加に伴って渦輪Fの到達距離が低下している。また、空気質成分の到達率も、パラメータ「U・T/R」の増加に伴って減少している。これは、放出孔110Aから吐出される空気が過多となり、直進流STが渦輪Fの進行に影響を及ぼすためであると考えられる。
【0046】
一方、パラメータ「U・T/R」が1以下の場合には、渦輪Fのみが生成され、また、パラメータ「U・T/R」が5以上の場合には、噴流(直進流ST)のみが吹き出す。従って、パラメータ「U・T/R」が1以下あるいは5以上の場合には、渦輪Fと直進流STとが同時に生成されない。
【0047】
以上により、渦輪Fと直進流STを生成するためには、パラメータ「U・T/R」を1〜5の範囲に設定する。さらに、渦輪F内に効率よく空気質成分を含ませることを考慮すると、パラメータ「U・T/R」を1〜πの範囲に設定することが望ましい。
【0048】
さらに、放出孔110Aから吐出される空気のレイノルズ数Reを4×10以下とする。尚、レイノルズ数Reは下記数式4によって求められる。
【0049】
(数4)
Re=2πUR/ν
ν:空気の動粘性係数 2πR:代表長さ U:代表速度(=風速U) R:開口半径
一般に、レイノルズ数Reが4×10以上の場合には、乱流となるため、生成された渦輪Fが拡散する。従って、放出孔110Aから吐出された空気のレイノルズ数Reを4×10以下とすることで、吐出された空気を層流とし、生成された渦輪Fを拡散させること無く保持することができる。具体的には、放出孔110Aから吐出される空気の速度Uと、放出孔の開口半径Rとの積「U・R」を0.1以下となるようにすれば良い。本実施形態では、開口半径Rを一定としているため、上記の「U・R」を0.1以下となるように風速Uを調整する。
【0050】
本実施形態によれば、渦輪Fと、この渦輪Fの内環を直進流STを生成することで、渦輪Fは直進流STの進行方向に沿って進行する。このため、周囲空気の流れがあったとしても、渦輪Fが周囲空気に流されにくくなり、所望の方向へ渦輪Fを確実に進行させることができる。また、渦輪Fの周囲空気は直進流STの進行方向に沿って流れるため、渦輪Fに対する周囲空気の流れの影響が小さくなり、渦輪Fが破壊されにくくなる。以上のことから、渦輪Fは、周囲空気の流れによる影響を受け難くなり、乗員3,4に確実に渦輪Fを供給できる。 直進流STと渦輪Fとを生成するためには、具体的には、パラメータ「U・T/R」が1〜5の範囲となるように圧縮部材131を変位させるようにすれば良い。さらに望ましくは、パラメータ「U・T/R」が1〜πの範囲となるように設定する。これにより、放出孔110Aから吐出される空気質成分がすべて渦輪Fに閉じ込められるため、放出された空気質成分が周囲に拡散しづらくなり、空気質成分を効率よく乗員3,4に供給することができる。
【0051】
また、本実施形態で示したパラメータ「U・T/R」は、無次元数であるため、放出孔110Aの開口半径Rが異なる場合であっても、当該パラメータ「U・T/R」が所定の範囲(1〜5の範囲)となるように圧縮部材131を変位させることで、効率よく空気質成分を供給することができる。 また、放出
孔110Aから吐出される空気のレイノルズ数Reを4×10以下としているため、吐出された空気を層流とし、生成された渦輪Fを拡散させること無く保持することができる。
【図面の簡単な説明】
【0052】
【図1】第1の実施形態に係る空気質成分供給装置の車内配置を示した概略図である。
【図2】車両用空気質成分供給装置の全体構成を示した概念図である。
【図3】筐体内の構成を示した断面図である。
【図4】(A)は、圧縮部材の変位位置の時間変化を示したグラフである。(B)は、放出孔から吐出される空気の風速の時間変化を示したグラフである。
【図5】(A)は、パラメータ「U・T/R」と空気質成分の到達距離との関係を示したグラフである。(B)は、パラメータ「U・T/R」と放出孔から0.2m離れた位置での空気質成分の到達率を示したグラフである。
【図6】放出孔から吐出される空気と、この空気によって生成される渦輪の断面形状を示した概略図である。
【符号の説明】
【0053】
110A…放出孔
120…空気質成分チャンバ
130…圧縮手段
131…圧縮部材
F…渦輪
ST…直進流
U…風速
T…吐出時間
R…開口半径
【出願人】 【識別番号】000004260
【氏名又は名称】株式会社デンソー
【出願日】 平成18年7月14日(2006.7.14)
【代理人】 【識別番号】100106149
【弁理士】
【氏名又は名称】矢作 和行

【識別番号】100121991
【弁理士】
【氏名又は名称】野々部 泰平


【公開番号】 特開2008−18394(P2008−18394A)
【公開日】 平成20年1月31日(2008.1.31)
【出願番号】 特願2006−194525(P2006−194525)