トップ :: B 処理操作 運輸 :: B03 液体による,または,風力テ−ブルまたはジグによる固体物質の分離;固体物質または流体から固体物質の磁気または静電気による分離,高圧電界による分離

【発明の名称】 粒子の選別法
【発明者】 【氏名】井上 貴仁

【氏名】横山 浩

【氏名】高橋 一典

【要約】 【課題】例えば、セルソーターを転用した既存の染色体ソーターにおいては、高出力レーザー数台と選別用高電圧発生器を用いるため、選別装置が大規模となり、実際の運転には大電力を要していた。また、蛍光色素による染色を必要とし、その色素を高出力のレーザーで励起するために、該試料分子が化学的に損傷を受けると共に、高電圧印加による選別プロセスによって力学的な損傷を受けるという欠点を有していた。

【解決手段】本願発明においては、数センチ角のマイクロ流体デバイスチップと電圧は数ボルトであり、両極性の任意の波形を発生する装置から構成される。
【特許請求の範囲】
【請求項1】
1mm以下の大きさを有する荷電粒子の選別法において、サイズの異なる該粒子をマイクロ流体デバイスチップに収容し、該粒子に対し非対称両極性波形を有する電圧変調波形を印加することにより、該粒子を選別することを特徴とする粒子選別法。
【請求項2】
サイズの異なる1mm以下の大きさを有する荷電粒子を収容するマイクロ流体デバイスチップと前記粒子に非対称両極性波形を有する電圧変調波形を印加する印加手段とを備える粒子選別装置。
【発明の詳細な説明】【技術分野】
【0001】
本発明は、臨床医療およびコロイド界面科学の分野に関係し、装置でいえば、セルソーター、染色体ソーター、ベシクルソーターおよびコロイド粒子選別機等に関係する。
【背景技術】
【0002】
粒子をサイズに応じて選別する方法として、ふるいが古くから用いられてきた。しかし、この手法を生体分子の選別に適用するには、分子サイズのふるいを精度良く作製しなければならない。近年の半導体微細加工技術を駆使したサブミクロンスケールの分子ふるいが、一部の研究機関で作製されるようになった。しかし、分子による目詰まり、選別後の回収の困難さ、クリーンルームなどの大規模な研究施設の必要性などの様々な課題により、実用化にはほど遠い。
【0003】
すでに市販されている生体分子用のソーターは、生体分子を蛍光色素で染色し、それをレーザーで励起し、色素が発する蛍光強度により選別することをその基本原理としている(非特許文献1参照)。
【0004】
【非特許文献1】J.W. Gray et al., 「Science」 238, 323-329 (1987)
【発明の開示】
【発明が解決しようとする課題】
【0005】
例えば、セルソーターを転用した既存の染色体ソーターにおいては、基本的に高出力レーザー数台と選別用高電圧発生器を用いるため、選別装置が大規模となり、実際の運転には大電力を要していた。また、蛍光色素による染色を必要とし、その色素を高出力のレーザーで励起するために、該試料分子が化学的に損傷を受けると共に、高電圧印加による選別プロセスによって力学的な損傷を受けるという欠点を有していた。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本願発明においては、基本的に数センチ角のマイクロ流体デバイスチップと任意の電圧波形発生装置から構成される。その印加される電圧は、数ボルトであり、両極性の電圧である。
【0007】
したがって、構成はコンパクトで、省エネルギーでオペレーション可能であり、基本的には蛍光色素による染色を必要としないし、両極性の電圧を印加するため、電気泳動のようなジュール熱が発生することもない。
【発明の効果】
【0008】
本願発明の効果は、以下のとおりである。
1.全体装置は、数センチ角のマイクロ流体デバイスチップと任意の電圧波形を発生するノートタイプコンピューターから成るので、省スペース(コンパクト)であり、従来のソーターの1/100以下の省電力で動作可能である。
2.基本的には蛍光色素による染色を必要としないので、力学的および化学的な損傷はほとんどない。
3.数ボルト程度の電圧印加により、選別が可能であり、また、両極性の電圧を印加するので、電気泳動のようなジュール熱は発生しない。
4.マイクロ流体デバイスチップの表面処理を行い、生体分子あるいはコロイド粒子とチップ表面との相互作用力、たとえば、静電引力、化学・物理吸着力、摩擦力を制御することにより、より精密かつ短時間で選別可能となる。
5.細胞や血球は、その生死により電気的な応答特性や表面の状態が変化するので、4との組み合わせにより生死による選別や判別が可能である。
【発明を実施するための最良の形態】
【0009】
図1は、交流電場における異なるサイズの染色体の振動振幅を交流電圧周波数に対してプロットしたものである。この図から明らかなように、いずれのサイズの染色体も交流電圧周波数の増加に伴い振動振幅は減少し、また、大きなサイズの染色体は、小さな染色体に比較して、より低い周波数の交流電場においても応答できなくなることが明らかである。
【0010】
このような、交流電場における異なるサイズの染色体の振動挙動特性を利用して、図2に示す電圧変調波形を選別に用いることにより、高速かつ超小型の染色体ソーターが実現可能である。
【実施例1】
【0011】
図3にその一例を示す。この条件下(周波数:1Hz、印加電圧:10Vpp、立ち上がり時間:250ミリ秒、下降時間:40ミリ秒)においては、図に見られるように、小さなサイズの染色体が大きなサイズの染色体を追い抜いていく様子が観察される。この場合、3μmサイズの染色体は、1パルス当たり5μm、9μmサイズの染色体は、1パルス当たり0.2μmの移動を示した。
【0012】
図4は、数センチ角の大きさのマイクロ流体デバイスの断面図である。ガラス基板上にマイクロ電極を作製し、ポリマーにより非常に浅いポットを形成し、その中に、試料である荷電粒子を収容する。該デバイスは、安価で使い捨て可能である。
【0013】
図5は、本願発明に係る粒子選別装置の概観であり、上記マイクロ流体デバイスチップと任意の電圧波形を発生するノートタイプコンピューターから構成されている。交流電場中において、小さな染色体の移動度は、大きな染色体の移動度より大きいので、より遠くに移動するので、大きさにより選別することができる。これを直流電場で回収ポットに移動させ回収する。したがって、試料導入口に近いポットAでは大きな染色体が、また、遠いポットCでは小さな染色体が回収される。
【0014】
このように、コンパクトかつ簡便な装置構成により、染色体ソーターを実現することができる。この選別手法は、原理的には、荷電物質であるならば種類を選ばないため、細胞やDNAなどの他の生体分子のみならず、コロイド粒子の選別にも適用可能である。すでに、サイズの異なるコロイド粒子での動作実験も行い、その原理を実証している。
【図面の簡単な説明】
【0015】
【図1】交流電場における異なるサイズの染色体の振動振幅を交流電圧周波数に対してプロットした図。
【図2】電圧変調波形の一例。ここでは、非対称両極性波形。
【図3】異なるサイズの染色体の振動挙動特性。
【図4】マイクロ流体デバイスの断面図。
【図5】本願発明に係る粒子選別装置の全体概念図。
【出願人】 【識別番号】301021533
【氏名又は名称】独立行政法人産業技術総合研究所
【出願日】 平成20年2月28日(2008.2.28)
【代理人】
【公開番号】 特開2008−188592(P2008−188592A)
【公開日】 平成20年8月21日(2008.8.21)
【出願番号】 特願2008−47819(P2008−47819)