Warning: copy(htaccessbak): failed to open stream: No such file or directory in /home/jtokkyo/public_html/header.php on line 10
燃料の製造方法 - 特開2004−149742 | j-tokkyo
トップ :: C 化学 冶金 :: C10 石油,ガスまたはコ−クス工業;一酸化炭素を含有する工業ガス;燃料;潤滑剤;でい炭

【発明の名称】 燃料の製造方法
【発明者】 【氏名】相模 博生
【住所又は居所】愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【要約】 【課題】トリグリセリドを原料とした燃料を効率よく製造する燃料の製造方法を提供する。

【解決手段】一般式(I)CHOCORCHOCORCHOCORで表されるトリグリセリドと一般式(II)ROCORで表されるカルボン酸エステルとをエステル交換反応させて、一般式(III)(CHOCORCHOCORで表されるエステルと一般式(IV)ROCOR,一般式(V)ROCORおよび一般式(VI)ROCORで表されるエステルとを得る。(式中、R,RおよびRは、約6〜24個の炭素原子を含有する飽和脂肪族または不飽和脂肪族を表し、この飽和脂肪族または不飽和脂肪族はヒドロキシ基を含む場合もある。また、式中、Rは炭素数1〜3のアルキル基,Rは炭素数1〜24のアルキル基を表す。)得られた一般式(III)〜(VI)で表されるエステルは何れも燃料として良好に使用することができる。
【特許請求の範囲】
【請求項1】
一般式(I)CHOCORCHOCORCHOCORで表されるトリグリセリドと一般式(II)ROCORで表されるカルボン酸エステルとをエステル交換反応させて、一般式(III)(CHOCORCHOCORで表されるエステルと一般式(IV)ROCOR,一般式(V)ROCORおよび一般式(VI)ROCORで表されるエステルとを得ることを特徴とする燃料の製造方法。
(式中、R,RおよびRは、約6〜24個の炭素原子を含有する飽和脂肪族または不飽和脂肪族を表し、この飽和脂肪族または不飽和脂肪族はヒドロキシ基を含む場合もある。また、式中、Rは炭素数1〜3のアルキル基,Rは炭素数1〜24のアルキル基を表す。)
【請求項2】
前記カルボン酸エステルは、酢酸メチル,酢酸エチル,酢酸プロピル,酢酸ブチル,プロピオン酸メチル,プロピオン酸エチル,プロピオン酸ブチル,酪酸メチル,酪酸エチルまたは酪酸ブチルから選ばれる少なくとも一種である請求項1に記載の燃料の製造方法。
【請求項3】
前記エステル交換反応は130℃〜400℃の温度条件でおこなわれる請求項1または請求項2に記載の燃料の製造方法。
【請求項4】
前記エステル交換反応は200℃〜400℃の温度条件でおこなわれる請求項1または請求項2に記載の燃料の製造方法。
【発明の詳細な説明】【0001】
【発明の属する技術分野】
本発明は、合成油,植物油および動物油等の各種油脂,あるいは天ぷら油等の廃油より得られる燃料の製造方法に関する。
【0002】
【従来の技術】
灯油,軽油,重油等の化石液体燃料は、取り扱いの容易さや安価であることから、従来より一般に用いられているものであるが、近年資源の枯渇が問題となっており、かつ、燃焼により発生するSOやNO,CO等の生成物が大気汚染の原因ともなっている。このことから、近年では、植物油や動物油等の再生産可能な原料(バイオマス)を用いた燃料が開発されている。例えば、バイオマスを用いた燃料の代表的なものであるバイオディーゼルは、従来の石油液体燃料を用いた内燃機関と同じ内燃機関を使用可能であるとともに、排ガス放出量を大幅に低減させることが可能となる。
【0003】
このような燃料としては、通常、合成油,植物油および動物油等に含まれるトリグリセリドより合成されたエステルが用いられている。このエステルを製造する方法としては、例えば、トリグリセリドとメタノールおよびアルカリ触媒を反応させる方法や、トリグリセリドと超臨界メタノールを反応させる方法等がある(例えば、特許文献1,2参照)。
【0004】
ここで、特許文献1に記載されるような燃料の製造方法においては、アルカリ触媒が用いられるため、この製造方法で得られた燃料はアルカリの除去処理をおこなう必要がある。すなわち、アルカリが存在していると、遊離の脂肪酸あるいは脂肪酸化合物と反応してアルカリ石鹸となることから、得られた燃料をそのまま使用することは困難である。また、アルカリが存在した燃料は、燃料配管を腐食させる問題もある。
【0005】
また、特許文献1および特許文献2に記載されるような燃料の製造方法によると、原料である天然油脂(トリグリセリド)に対応する脂肪酸のメチルエステル化物が得られる。この脂肪酸のメチルエステル化物は燃料としてそのまま使用することが可能であるが、副産物としてグリセロールが生成する。グリセロールは燃料として使用することができないため、特許文献1および特許文献2に記載されるような方法で製造された生成物を燃料として用いるためには、燃料蒸留等の方法でこのグリセロールを除去する工程が必要となる。しかし、グリセロールの除去は困難な工程であり、かつ、回収されたグリセロールは廃棄されることとなるため、廃棄物を多く生じるとともに生産効率に劣る問題もあった。
【0006】
【特許文献1】
特開平10−237470号公報
【特許文献2】
特開2000−204392号公報
【0007】
【発明が解決しようとする課題】
本発明は上記の事情に鑑みてなされたもので、トリグリセリドを原料とした燃料を効率よく製造することを可能とする燃料の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の燃料の製造方法は、一般式(I)CHOCORCHOCORCHOCORで表されるトリグリセリドと一般式(II)ROCORで表されるカルボン酸エステルとをエステル交換反応させて、一般式(III)(CHOCORCHOCORで表されるエステルと一般式(IV)ROCOR,一般式(V)ROCORおよび一般式(VI)ROCORで表されるエステルとを得ることを特徴とする。(式中、R,RおよびRは、約6〜24個の炭素原子を含有する飽和脂肪族または不飽和脂肪族を表し、この飽和脂肪族または不飽和脂肪族はヒドロキシ基を含む場合もある。また、式中、Rは炭素数1〜3のアルキル基,Rは炭素数1〜24のアルキル基を表す。)
上述したように、通常の製造方法によると、エステル交換反応の副産物として燃料として使用できないグリセロールが生成する。このため、製造工程にはグリセロールを分離する分離・精製工程が必要であったが、グリセロールを分離する工程は困難であるとともに高コストを要する工程であった。
【0009】
本発明の構成によると、トリグリセリドとカルボン酸エステルとにより生成する一般式(IV)〜(VI)のエステルは、通常の製造方法により製造される脂肪酸由来のエステル燃料と同様に燃料として使用することができ、かつ、一般式(III)のエステルもまた燃料として使用することができる。したがって、不要な反応生成物を生成することなく、製造工程を低減することが可能となる。燃料を効率よく製造することができる。また、不要な反応生成物が生成しないことから、燃料としての収率が著しく向上する。
【0010】
また、本発明の燃料の製造方法において、上記カルボン酸エステルは、酢酸メチル,酢酸エチル,酢酸プロピル,酢酸ブチル,プロピオン酸メチル,プロピオン酸エチル,プロピオン酸ブチル,酪酸メチル,酪酸エチルまたは酪酸ブチルから選ばれる少なくとも一種であることが好ましい。
【0011】
そして、上記エステル交換反応は130℃〜400℃の温度条件でおこなわれることが好ましい。
【0012】
【発明の実施の形態】
本発明の燃料の製造方法は、一般式(I)CHOCORCHOCORCHOCORで表されるトリグリセリドと一般式(II)ROCORで表されるカルボン酸エステルとをエステル交換反応させるものである。
【0013】
一般式(I)で表されるトリグリセリドは、R,RおよびRが約6〜24個の炭素原子を含有するものであれば良く、R,RおよびRは飽和脂肪族であってもよいし、モノ,ジ,トリ不飽和脂肪族であってもよい。さらに、R,RおよびRはヒドロキシ基を含むものであってもよい。ここで限定されるトリグリセリドのR〜Rの炭素数は、通常、トリグリセリドよりエステル交換反応で得られた一般式(IV)〜(VI)に示されるエステルが燃料として好適に使用されるといわれる範囲である。
【0014】
このようなトリグリセリドとしては、植物油や動物油等の天然油脂に含まれるものあるいは化学的に合成されたもの等種々のものを用いることができる。また、このトリグリセリドは精製されたものであっても良いし、未精製のもの、例えば植物油や動物油等を直接使用するものであっても良い。植物油および動物油としては、魚油、牛脂や豚脂等の獣油、サフラワー油,ひまわり油,アマニ油,大豆油,菜種油,綿実油,オリーブ油,パーム油,コーン油,ゴマ油,ヒマシ油等の植物油等の通常のものを使用することができる。これらの油脂は1種のみを使用することもできるし2種以上を混合して用いることもできる。さらに、これらの油脂は天ぷら油等の廃油であっても良い。
【0015】
一般式(II)で表されるカルボン酸エステルは、式中Rが炭素数1〜3のアルキル基,Rが炭素数1〜24のアルキル基となるものであればよい。Rがこの範囲のものは、後述するエステル交換反応によって得られる一般式(III)で表されるエステルを燃料として良好に使用することができる。Rがこれ以上になると、粘性が高くなり,揮発性が低くなり,着火性が高くなるため好ましくない。また、Rがこれ以上になる場合も同様に、粘性が高くなり,揮発性が低くなり,着火性が高くなるため好ましくない。参考までに、一般軽油の凝固点は−10℃であり沸点は170℃〜365℃であるが、本発明の燃料の製造方法においてRおよびRをこの範囲のものとすることで同等の性質を有する燃料を得ることができる。
【0016】
このようなカルボン酸エステルとしては酢酸メチル,酢酸プロピル,酢酸ブチル,プロピオンメチル,プロピオン酸エチル,プロピオン酸ブチル,酪酸メチル,酪酸エチル,酪酸ブチルを用いることが好ましく、酢酸メチルが特に好ましい。カルボン酸エステルとしてこれらのものを用いることで、より低沸点の燃料を合成可能となるからである。
【0017】
本発明の燃料の製造方法において、エステル交換反応は密閉・高温条件下等の通常の条件でおこなうことができ、温度条件は130℃〜400℃の範囲内であることが好ましい。温度条件がこれ以下であると良好なエステル交換反応が生じにくくなり温度条件がこれ以上であるとカルボン酸エステルの安定性が悪くなるため好ましくない。また、後述する実施例に示されるように、200℃以上の温度条件で、より良好にエステル交換反応が生じることから、200℃以上の温度条件であることがより好ましい。
【0018】
本発明の燃料の製造方法において、上述した一般式(I)で表されるトリグリセリドと一般式(II)で表されるカルボン酸エステルとのエステル交換反応によって、一般式(III)(CHOCORCHOCORで表されるエステルと一般式(IV)ROCOR,一般式(V)ROCORおよび一般式(VI)ROCORで表されるエステルとが得られる。
【0019】
上述したように、一般式(III)で表されるエステルはRがR炭素数1〜3のアルキル基であり、燃料として好適に使用されるものである。そして、一般式(IV)〜(VI)で表されるエステルは通常の燃料の製造方法で製造されるエステルと同様のものであり、これも燃料として好適に使用されるものである。すなわち、本発明の燃料の製造方法によると、得られた反応生成物はそのまま燃料として使用可能であることから、製造工程を低減するとともに燃料としての収率を顕著に向上させることができ、コストを低減することが可能となる。
【0020】
なお、本発明の燃料の製造方法において、トリグリセリド原料として廃油等を用いる場合には予めフィルタープレス等の既知の濾過機を用いて不純物を除去することが好ましい。この際、活性白土,珪藻土,ゼオライト,活性炭等の既知の濾材を用いることもできる。この濾材の量は廃油の種類や廃油中に含有される不純物の量等に応じて適宜設定することができる。
【0021】
【実施例】
以下、実施例により具体的に説明する。
【0022】
〔実施例1〕
本発明の実施例1の燃料の製造方法は、トリグリセリド原料としてひまわり油を用い、カルボン酸エステルとして酢酸メチルを用いた例である。
【0023】
ひまわり油20mg,酢酸メチル1gを反応管(SUS製,長さ100mm,内径3.8mm,外径6.35mm)内に密封した。
【0024】
この反応管を以下に示す各反応温度および各反応時間の条件で加熱してトリグリセリドとカルボン酸エステルのエステル交換反応をおこなった。加熱後、各々の反応管を室温まで冷却して反応物を回収した。
【0025】
本実施例1におけるエステル交換反応を下式に示す。
【0026】
【化1】


【0027】
(1−1)
加熱温度;130℃,160℃,200℃,230℃,260℃,290℃
加熱時間;90分間
(1−2)
加熱温度;200℃
加熱時間;30分間,60分間,90分間,120分間,150分間,180分間
〔実施例2〕
本発明の実施例2の燃料の製造方法は、トリグリセリド原料として大豆油を用い、カルボン酸エステルとして酢酸メチルを用いた例である。本実施例2においても実施例1と同様に各反応温度および反応時間の条件で反応管を加熱し、トリグリセリドとカルボン酸エステルのエステル交換反応をおこない、実施例1と同様に冷却後反応物を回収した。
(2−1)
加熱温度;130℃,160℃,200℃,230℃,260℃,290℃
加熱時間;90分間
(2−2)
加熱温度;200℃
加熱時間;30分間,60分間,90分間,120分間,150分間,180分間
〈実施例3〉
本発明の実施例3の燃料の製造方法は、トリグリセリド原料として大豆油を用い、カルボン酸エステルとして酢酸メチルを用いた例である。本実施例3においても実施例1と同様に各反応温度および反応時間の条件で反応管を加熱し、トリグリセリドとカルボン酸エステルのエステル交換反応をおこない、実施例1と同様に冷却後反応物を回収した。
(3−1)
加熱温度;130℃,160℃,200℃,230℃,260℃,290℃
加熱時間;90分間
(3−2)
加熱温度;200℃
加熱時間;30分間,60分間,90分間,120分間,150分間,180分間
〔反応生成物分析試験〕
実施例1〜3で得られた各トリグリセリド原料由来の反応生成物を各々ガスクロマトグラフィーにより分析し、各反応生成物の生成量を分析した。ガスクロマトグラフ分析の条件は以下の通りである。
カラム;キャピラリカラムDB−1(30m)
オーブン;50→300℃(20min Hold)10℃/min Up
検出器;FID
なお、反応生成物の同定はGC−MSを用い、得られたマススペクトルでおこなった。実施例2−1(トリグリセリド原料;大豆油,加熱温度;260℃、加熱時間;90分)の反応生成物の同定結果を図1に示す。
【0028】
上記の分析試験により得られた各エステルの収率を計算した。収率は、各エステルの標準品による検量線をもちいて算出した。検量線作成に用いた各エステルの標準品としては、トリアセチン,パルミチン酸メチル,リノール酸メチル,オレイン酸メチル,ステアリン酸メチルなどを用いた。まず、各トリグリセリド原料に含まれる各トリグリセリドの理論値と、各トリグリセリドに含まれる脂肪酸骨格およびグリセロール骨格の理論値より、反応が完全におこなわれた場合の各エステルの各重量の理論値を算出する。次いで、反応生成物をガスクロマトグラフィにて分析し、実際に生成した各エステルの重量の実測値を得る。この各エステルの実測値と先に算出した各エステルの理論値とを用い、各々のエステルについて理論値を100%とした場合の収率を算出した。最後に各々の収率の平均をとり、反応生成物の収率とした。本反応生成物分析試験により得られた反応生成物の収率を図2および図3に示す。
【0029】
図1に示すように、本発明の実施例1〜3の燃料の製造方法で得られた生成物中にはトリアセチンおよび各種脂肪酸のメチルエステルが生成する。そして、図2に示すように、原料となるトリアセチンを含む油脂の種類によって差はあるものの、加熱時間90分の反応条件下において温度条件が200℃以上でより収率が向上し、加熱温度230℃以上で収率はほぼ100%となる。
【0030】
また、図3に示すように、本実施例1〜3の燃料の製造方法で得られた生成物中に含まれるトリアセチレンの収率は、上記と同様に油脂の種類によって差はあるものの、加熱温度200℃の温度条件下で加熱時間90分以上でより向上し、加熱時間120分以上でほぼ100%となる。
【0031】
これらの結果から、本発明の燃料の製造方法によると、燃料として使用できるトリアセチンおよび脂肪酸のメチルエステルが非常に高い収率で得られることがわかる。
【0032】
【発明の効果】
以上述べてきたように、本発明の燃料の製造方法によると、燃料として使用できるエステルを非常に高い収率で得ることができる。そして、収率が非常に高い、すなわち、燃料として使用できないグリセロール等の副産物が生成しないことから、分離・精製の煩雑な工程を必要とせず、トリグリセリドを原料とした燃料を効率よく製造することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例2−1の反応生成物の同定結果である。
【図2】本発明の実施例1〜3の燃料の製造方法で得られたエステルの収率を表すグラフである。
【図3】本発明の実施例1〜3の燃料の製造方法で得られたエステルの収率を表すグラフである。
【出願人】 【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
【住所又は居所】愛知県豊田市トヨタ町1番地
【出願日】 平成14年11月1日(2002.11.1)
【代理人】 【識別番号】100081776
【弁理士】
【氏名又は名称】大川 宏

【公開番号】 特開2004−149742(P2004−149742A)
【公開日】 平成16年5月27日(2004.5.27)
【出願番号】 特願2002−319593(P2002−319593)