トップ :: B 処理操作 運輸 :: B60 車両一般

【発明の名称】 車輌の減衰係数制御装置
【発明者】 【氏名】村田 正博

【要約】 【課題】車輌の過渡旋回時の運動性能を車輌の走行状況に応じて適正に向上させる。

【解決手段】車輌の実ヨーレートγfと基準ヨーレートγtとの偏差Δγが演算され(S30、40)、車輌の旋回挙動が判別される(S50〜70)。車輌がオーバステア状態にあるときには前輪側の所定の距離Lf及び仮想のショックアブソーバの減衰係数Cgf、Cfが偏差Δγに応じて増大補正されると共に、後輪側の所定の距離Lr及び仮想のショックアブソーバの減衰係数Cgr、Crが偏差Δγに応じて低減補正される(S80、100)。逆に車輌がアンダステア状態にあるときには前輪側の所定の距離Lf及び仮想のショックアブソーバの減衰係数Cgf、Cfが偏差Δγに応じて低減補正されると共に、後輪側の所定の距離Lr及び仮想のショックアブソーバの減衰係数Cgr、Crが偏差Δγに応じて増大補正される(S90、100)。
【特許請求の範囲】
【請求項1】各車輪に対応して減衰係数可変の実際のショックアブソーバが設けられた車輌の減衰係数制御装置にして、車輌の旋回状態を検出する手段と、前記車輌の状態量を検出する手段と、前記車輌の旋回状態に基づきばね上の重心に対しリフトすると推定される側へ前記ばね上より所定の距離車輌横方向に隔置された仮想位置に前記ばね上の仮想の揺動中心を有すると共に前記仮想の揺動中心の周りに作用する第一の仮想のショックアブソーバ及び前記仮想位置にて上下方向に作用する第二の仮想のショックアブソーバを有する車輌モデルと、前記車輌の状態量に応じて前記所定の距離を可変設定する距離設定手段と、少なくとも前記仮想減衰係数及び前記所定の距離に基づき前記実際のショックアブソーバの目標減衰係数を演算する手段と、前記目標減衰係数に基づき前記実際のショックアブソーバの減衰係数を制御する手段とを有することを特徴とする車輌の減衰係数制御装置。
【請求項2】前記車輌モデルは前輪の車輌モデルと後輪の車輌モデルとよりなることを特徴とする請求項1に記載の車輌の減衰係数制御装置。
【請求項3】前記車輌の状態量を検出する手段は前記車輌の旋回挙動を検出し、前記距離設定手段は前記車輌の旋回挙動に応じて前記所定の距離を可変設定することを特徴とする請求項1又は2に記載の車輌の減衰係数制御装置。
【請求項4】前記車輌の状態量を検出する手段は前記車輌の横加加速度を検出し、前記距離設定手段は前記車輌の横加加速度に応じて前記所定の距離を可変設定することを特徴とする請求項1又は2に記載の車輌の減衰係数制御装置。
【請求項5】前記車輌の状態量を検出する手段は前記実際のショックアブソーバの二つのシリンダ室内圧力の差圧を検出し、前記距離設定手段は前記差圧に応じて前記所定の距離を可変設定することを特徴とする請求項1又は2に記載の車輌の減衰係数制御装置。
【請求項6】前記車輌の状態量を検出する手段は前記車輌の旋回挙動を検出し、前記距離設定手段は前記車輌の旋回挙動に応じて前記前輪の車輌モデルと前記後輪の車輌モデルとの間の前記所定の距離の比を可変設定することを特徴とする請求項2に記載の車輌の減衰係数制御装置。
【発明の詳細な説明】【0001】
【発明の属する技術分野】本発明は、自動車等の車輌の減衰係数制御装置に係り、更に詳細には過渡旋回時の車輌の運動性能を向上させるよう改良された減衰係数制御装置に係る。
【0002】
【従来の技術】各車輪に対応して減衰係数可変のショックアブソーバが設けられた自動車等の車輌の減衰係数制御装置の一つとして、例えば本願出願人の出願にかかる出願公開前の特願平10−92675号の明細書及び図面には、車輌の旋回情報を検出する手段と、車体ロール量の変化を求める手段と、車体ロール量の増大過程に於いては旋回内側のショックアブソーバの減衰係数を旋回外側のショックアブソーバの減衰係数よりも相対的に高く制御する手段とを有することを特徴とする車輌の減衰係数制御装置が記載されている。
【0003】この先の提案にかかる減衰係数制御装置によれば、車体ロール量の増大過程に於いては、旋回内側のショックアブソーバの減衰係数が旋回外側のショックアブソーバの減衰係数よりも相対的に高く制御され、これにより下向きに作用する旋回内側のショックアブソーバの減衰力が上向きに作用する旋回外側のショックアブソーバの減衰力よりも相対的に高く制御されるので、全体として車体に作用する下向きの力が増大し、これにより車高を低減して車輌の過渡旋回時に於ける運動性能を向上させることができる。
【0004】
【発明が解決しようとする課題】上記先の提案にかかる減衰係数制御装置に於いては、車輌の旋回状態に基づき車体の重心に対しリフトすると推定される側へ車体より所定の距離車輌横方向に隔置された仮想位置に車体の仮想の揺動中心を有すると共に仮想の揺動中心の周りに作用する第一の仮想のショックアブソーバ及び仮想位置にて上下方向に作用する第二の仮想のショックアブソーバを有する車輌モデルに基づき、各車輪に対応して設けられた減衰係数可変の実際のショックアブソーバの減衰係数が制御されるようになっている。
【0005】一般に、車輌の旋回走行状況により車輌の旋回挙動や車体の姿勢が変化する。例えば車輌の旋回走行時には車速、加減速度、操舵角、路面状況などの関係から車輌のステア特性がアンダステア側又はオーバステア側へ変化することがあり、また運転者により加減速操作が行われると加減速による車輌前後方向の荷重移動に起因してステア特性が変化する。また旋回時の車体の姿勢は加減速や操舵操作により変化する。
【0006】しかるに上記先の提案にかかる減衰係数制御装置に於いては、車輌モデルの所定の距離は一定であるため、車輌が旋回走行する際のステア特性の変化や車体の姿勢変化が生じるような状況に於いて実際のショックアブソーバの減衰係数を車輌の走行状況に応じて適切に制御することができないという問題がある。
【0007】本発明は、仮想の揺動中心の周りに作用する第一の仮想のショックアブソーバ及び仮想位置にて上下方向に作用する第二の仮想のショックアブソーバを有する車輌モデルに基づき実際のショックアブソーバの減衰係数を制御するよう構成された先の提案にかかる減衰係数制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、車輌の走行状況に応じて車輌モデルの所定の距離を可変設定することにより、車輌の過渡旋回時の運動性能を車輌の走行状況に応じて適正に向上させることである。
【0008】
【課題を解決するための手段】上述の主要な課題は、本発明によれば、請求項1の構成、即ち各車輪に対応して減衰係数可変の実際のショックアブソーバが設けられた車輌の減衰係数制御装置にして、車輌の旋回状態を検出する手段と、前記車輌の状態量を検出する手段と、前記車輌の旋回状態に基づきばね上の重心に対しリフトすると推定される側へ前記ばね上より所定の距離車輌横方向に隔置された仮想位置に前記ばね上の仮想の揺動中心を有すると共に前記仮想の揺動中心の周りに作用する第一の仮想のショックアブソーバ及び前記仮想位置にて上下方向に作用する第二の仮想のショックアブソーバを有する車輌モデルと、前記車輌の状態量に応じて前記所定の距離を可変設定する距離設定手段と、少なくとも前記仮想減衰係数及び前記所定の距離に基づき前記実際のショックアブソーバの目標減衰係数を演算する手段と、前記目標減衰係数に基づき前記実際のショックアブソーバの減衰係数を制御する手段とを有することを特徴とする車輌の減衰係数制御装置によって達成される。
【0009】上記請求項1の構成によれば、車輌の旋回状態に基づきばね上の重心に対しリフトすると推定される側へばね上より所定の距離車輌横方向に隔置された仮想位置にばね上の仮想の揺動中心を有すると共に仮想の揺動中心の周りに作用する第一の仮想のショックアブソーバ及び仮想位置にて上下方向に作用する第二の仮想のショックアブソーバを有する車輌モデルを有するので、車輌の過渡旋回時に第二の仮想のショックアブソーバによってばね上の旋回内輪側のリフトが抑制され、これによりばね上の重心が低下されると共に、車輌の状態量に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数が車輌の状態量に応じて適切に制御され、これにより車輌の状態量の如何に拘わらず車輌モデルの所定の距離が一定である場合に比して、車輌の過渡旋回時に於ける車輌のステア特性の変化やばね上の姿勢変化の抑制が車輌の走行状態に応じて適切に行われる。
【0010】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記車輌モデルは前輪の車輌モデルと後輪の車輌モデルとよりなるよう構成される(請求項2の構成)。
【0011】上記請求項2の構成によれば、車輌モデルは前輪の車輌モデルと後輪の車輌モデルとよりなるので、前輪側及び後輪側の実際のショックアブソーバの減衰係数が車輌の状態量に応じて適切に制御され、これにより車輌モデルが一つである場合に比して、車輌の過渡旋回時に於ける車輌のステア特性の変化やばね上の姿勢変化の抑制が車輌の走行状態に応じて適切に制御される。
【0012】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記車輌の状態量を検出する手段は前記車輌の旋回挙動を検出し、前記距離設定手段は前記車輌の旋回挙動に応じて前記所定の距離を可変設定するよう構成される(請求項3の構成)。
【0013】上記請求項3の構成によれば、車輌の旋回挙動に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数が車輌の旋回挙動に応じて適切に制御され、これにより車輌の旋回挙動の如何に拘わらず車輌モデルの所定の距離が一定である場合に比して、車輌の過渡旋回時に於ける車輌のステア特性の変化が適切に抑制される。
【0014】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記車輌の状態量を検出する手段は前記車輌の横加加速度を検出し、前記距離設定手段は前記車輌の横加加速度に応じて前記所定の距離を可変設定するよう構成される(請求項4の構成)。
【0015】上記請求項4の構成によれば、車輌の横加加速度に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数が車輌の横加加速度に応じて適切に制御され、これにより車輌の横加加速度の如何に拘わらず車輌モデルの所定の距離が一定である場合に比して、車輌の過渡旋回時に於けるばね上のロール姿勢変化が適切に抑制される。
【0016】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記車輌の状態量を検出する手段は前記実際のショックアブソーバの二つのシリンダ室内圧力の差圧を検出し、前記距離設定手段は前記差圧に応じて前記所定の距離を可変設定するよう構成される(請求項5の構成)。
【0017】上記請求項5の構成によれば、実際のショックアブソーバの二つのシリンダ室内圧力の差圧に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数が二つのシリンダ室内圧力の差圧に応じて適切に制御され、これによりばね上の姿勢変化が適切に制御される。
【0018】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於いて、前記車輌の状態量を検出する手段は前記車輌の旋回挙動を検出し、前記距離設定手段は前記車輌の旋回挙動に応じて前記前輪の車輌モデルと前記後輪の車輌モデルとの間の前記所定の距離の比を可変設定するよう構成される(請求項6の構成)。
【0019】上記請求項6の構成によれば、車輌の旋回挙動に応じて二つの車輌モデルの所定の距離の比が可変設定されるので、実際のショックアブソーバの減衰係数が車輌の旋回挙動に応じて適切に制御され、これに車輌の旋回挙動の如何に拘わらず二つの車輌モデルの所定の距離の比が一定である場合に比して、車輌の過渡旋回時に於けるばね上のピッチ姿勢変化及びこれに起因するステア特性の変化が適切に抑制される。
【0020】
【課題解決手段の好ましい態様】図6に示されている如く、実際の車輌の二輪モデルは車体110が左右の車輪112L及び112Rにより支持され、車体110と車輪112L及び112Rとの間にはサスペンションスプリング114L及び114Rとショックアブソーバ116L及び116Rとが配設されたものとして表わされる。
【0021】図6に示された実際の車輌モデルに於いて、例えば車輌が左旋回し、車体110に右方への慣性力が作用することにより車体に旋回外方へのロールモーメントMrollが作用したとすると、そのロールモーメントは左右のサスペンションスプリング114L及び114Rのばね力Fsl及びFsrと左右のショックアブソーバ116L及び116Rの減衰力Fal及びFarとにより担持され、車体のロール量の増大過程に於いてはこれらの力によるロール抑制方向のモーメントとロールモーメントMrollとが等しくなるまで車体110が旋回外方へロールする。
【0022】この場合サスペンションスプリング114Lのばね力Fslの増大量とサスペンションスプリング114Rのばね力Fsrの減少量は実質的に互いに等しく、また従来の車輌に於いては旋回時の左右のショックアブソーバの減衰係数は互いに等しい値に制御されるので、左右のショックアブソーバの減衰力Fal及びFarも実質的に互いに等しく、従って車輌の重心118の高さは実質的に変化しない。
【0023】これに対し図7に示されている如く、車体110と左右の車輪112L及び112Rとの間にサスペンションスプリング114L及び114Rのみが配設され、車輌に対し旋回内側に配置され車体110と仮想の車輪120との間にて上下方向の減衰力を発生する一つのショックアブソーバ122と、車体のロール変位を抑制する一つのショックアブソーバ124とが配設された仮想モデルを考えると、ロールモーメントMrollはショックアブソーバ122の減衰力Fasと左右のサスペンションスプリング114L及び114Rのばね力Fsl及びFsrとにより担持され、従来の場合に比して旋回内輪側の車高の増大量が低減されることにより、重心118の高さが低下する。
【0024】従って図6に示された実際の車輌の二輪モデルに於いて図7に示されている如き仮想モデルの制御を達成できれば、車体ロール量の増大過程に於いて車輌の重心118の高さを低下させ、これにより車輌の旋回初期に於ける運動性能を向上させることができる。
【0025】いま図7に示されている如く、左右のサスペンションスプリング114L及び114Rのばね定数をKとし、旋回外輪側のショックアブソーバの減衰係数をCout とし、旋回外輪のストロークをXout とし、旋回内輪側のショックアブソーバ114Lの減衰係数をCinとし、旋回内輪のストロークをXinとし、車輌のトレッドをWとし、車輌の重心118とショックアブソーバ122との間の距離をLとし、ショックアブソーバ122及び124の減衰係数をそれぞれCg 及びCとする。
【0026】また車体110の質量をMとし、車体の上下加速度及びロール角速度をそれぞれXbdd 及びθddとし、旋回外輪及び旋回内輪のストローク速度をそれぞれXoutd及びXind とすると、図7に示された仮想モデルに於ける上下方向の力の釣り合い及び重心118の周りの力の釣り合いよりそれぞれ下記の式1及び式2が成立する。
【0027】
【数1】

【0028】車体のロール運動を減衰させるパラメータとしてCn =WC/2とすると、上記式2は下記の式3の如く表わされる。
【0029】
【数2】

【0030】また図6に示された実際の車輌の二輪モデルに於ける上下方向の力の釣り合い及び重心118の周りの力の釣り合いよりそれぞれ下記の式4及び式5が成立する。
【0031】
【数3】

【0032】上記式1及び式4より下記の式6が成立する。
【0033】
【数4】

【0034】またここでCm =Cn /Lとすると、上記式3及び式5より下記の式7が成立する。
【0035】
【数5】

【0036】ここで図7に示された仮想モデルに於いてショックアブソーバ122により発生される上下力を下記の式8に従ってTと置くと、上記式6〜8より下記の式9〜11が成立する。
【0037】
【数6】

【0038】
【数7】

【0039】式9+式11より旋回内輪のショックアブソーバの減衰係数Cinを以下の如く求めることができる。
【0040】
【数8】

【0041】また上記式12を式9に代入して旋回外輪のショックアブソーバの減衰係数Cout を以下の如く求めることができる。
【0042】
【数9】

【0043】更に上記式12及び式13を整理して旋回内輪及び旋回外輪のショックアブソーバの減衰係数Cin及びCout はそれぞれ下記の式14及び式15の如く表わされる。
【0044】
【数10】

【0045】尚旋回内輪側及び旋回外輪側のショックアブソーバにより発生される減衰力はそれぞれ下記の式16及び式17の如く求められる。
【0046】
【数11】

【0047】また同様の考え方に基づき、車体ロール量の減少過程に於いては、車輌の旋回外側に仮想のショックアブソーバ122及び124が配設された仮想モデルに基づき、旋回内輪側及び旋回外輪側のショックアブソーバの減衰係数Cin及びCout をそれぞれ下記の式18及び式19の如く制御することにより、車輌の重心118の高さを低下させ、車輌の旋回終期に於ける運動性能を向上させることができる。
【0048】
【数12】

【0049】従って本発明の一つの好ましい態様によれば、上記請求項1の構成に於いて、車体ロール量の増大過程に於いては旋回内側のショックアブソーバの減衰係数Cin及び旋回外側のショックアブソーバの減衰係数Cout はそれぞれ上記式14及び式15に従って演算されるよう構成される(好ましい態様1)。
【0050】また本発明の他の一つの好ましい態様によれば、上記請求項1の構成に於いて、車体ロール量の減少過程に於いては旋回外側のショックアブソーバの減衰係数が旋回内側のショックアブソーバの減衰係数よりも高く制御されるよう構成される(好ましい態様2)。
【0051】また本発明の他の一つの好ましい態様によれば、上記好ましい態様2の構成に於いて、車体ロール量の減少過程に於いては旋回内側のショックアブソーバの減衰係数Cin及び旋回外側のショックアブソーバの減衰係数Cout はそれぞれ上記の式18及び式19に従って演算されるよう構成される(好ましい態様3)。
【0052】また本発明の他の一つの好ましい態様によれば、上記請求項2の構成に従い、上記好ましい態様1の構成に於いて、車輌モデルは前輪側の車輌モデルと後輪側の車輌モデルとよりなるよう構成される(好ましい態様4)。
【0053】また図8に示されている如く、前輪側及び後輪側の車輌モデルについてのL、W、T、Cg 、CをそれぞれLf 及びLr 、Wf 及びWr 、Tf 及びTr 、Cgf及びCgr、Cf 及びCr とし、旋回内側前輪及び旋回外側前輪のストローク速度をそれぞれXfind及びXfoutd とし、旋回内側後輪及び旋回外側後輪のストローク速度をそれぞれXrind及びXroutd とし、Tf 及びTr をそれぞれ下記の式20及び式21により表される値として、車体ロール量の増大過程に於いては旋回内側前輪のショックアブソーバの減衰係数Cfin 及び旋回外側前輪のショックアブソーバの減衰係数Cfoutはそれぞれ下記の式22及び式23に従って演算され、旋回内側後輪のショックアブソーバの減衰係数Crin 及び旋回外側後輪のショックアブソーバの減衰係数Croutはそれぞれ下記の式24及び式25に従って演算されることが好ましい。
【0054】
【数13】

【0055】
【数14】

【0056】従って本発明の他の一つの好ましい態様によれば、上記好ましい態様4の構成に於いて、車体ロール量の増大過程に於いては旋回内側前輪のショックアブソーバの減衰係数Cfin 及び旋回外側前輪のショックアブソーバの減衰係数Cfoutはそれぞれ上記式22及び式23に従って演算され、旋回内側後輪のショックアブソーバの減衰係数Crin 及び旋回外側後輪のショックアブソーバの減衰係数Croutはそれぞれ上記式24及び式25に従って演算されるよう構成される(好ましい態様5)。
【0057】同様に本発明の他の一つの好ましい態様によれば、上記好ましい態様3の構成に於いて、車輌モデルは前輪側の車輌モデルと後輪側の車輌モデルとよりなるよう構成される(好ましい態様6)。
【0058】また本発明の他の一つの好ましい態様によれば、上記好ましい態様6の構成に於いて、車体ロール量の減少過程に於いては旋回内側前輪のショックアブソーバの減衰係数Cfin 及び旋回外側前輪のショックアブソーバの減衰係数Cfoutはそれぞれ下記の式26及び式27に従って演算され、旋回内側後輪のショックアブソーバの減衰係数Crin 及び旋回外側後輪のショックアブソーバの減衰係数Croutはそれぞれ下記の式28及び式29に従って演算されるよう構成される(好ましい態様7)。
【0059】
【数15】

【0060】また本発明の他の一つの好ましい態様によれば、上記請求項3の構成に於いて、車輌の状態量を検出する手段は車輌の基準ヨーレートと車輌の実ヨーレートとの偏差を車輌の旋回挙動として検出するよう構成される(好ましい態様8)。
【0061】また本発明の他の一つの好ましい態様によれば、上記請求項3の構成に於いて、車輌の状態量を検出する手段は車輌のスリップ角及びその変化率の関係を車輌の旋回挙動として検出するよう構成される(好ましい態様9)。
【0062】また本発明の他の一つの好ましい態様によれば、上記請求項4の構成に於いて、車輌の状態量を検出する手段は車速、操舵角、操舵角速度に基づき車輌の横加加速度を推定するよう構成される(好ましい態様10)。
【0063】また本発明の他の一つの好ましい態様によれば、上記請求項5の構成に於いて、上記請求項2の構成に従い、距離設定手段は左右前輪の差圧の大きい方の値に応じて前輪の車輌モデルの所定の距離を可変設定し、左右後輪の差圧の大きい方の値に応じて後輪の車輌モデルの所定の距離を可変設定するよう構成される(好ましい態様11)。
【0064】また本発明の他の一つの好ましい態様によれば、上記請求項6の構成に於いて、車輌の旋回挙動がオーバステア側へのステア特性変化の挙動であるときには前輪側のロール剛性を増大させ若しくは後輪側のロール剛性を低下させるよう前輪の車輌モデルと後輪の車輌モデルとの間の所定の距離の比を可変設定するよう構成される(好ましい態様12)。
【0065】また本発明の他の一つの好ましい態様によれば、上記請求項6の構成に於いて、車輌の旋回挙動がアンダステア側へのステア特性変化の挙動であるときには前輪側のロール剛性を低下させ若しくは後輪側のロール剛性を増大させるよう前輪の車輌モデルと後輪の車輌モデルとの間の所定の距離の比を可変設定するよう構成される(好ましい態様13)。
【0066】また本発明の他の一つの好ましい態様によれば、上記請求項6の構成に於いて、車輌の状態量を検出する手段はばね上のピッチ運動状態量を検出するよう構成される(好ましい態様14)。
【0067】また本発明の他の一つの好ましい態様によれば、上記好ましい態様14の構成に於いて、ばね上のピッチ運動状態量は車輌の加減速度であるよう構成される(好ましい態様15)。
【0068】また本発明の他の一つの好ましい態様によれば、上記好ましい態様15の構成に於いて、車輌の加減速度は運転者による加減速操作量に基づき推定される推定加減速度であるよう構成される(好ましい態様16)。
【0069】また本発明の他の一つの好ましい態様によれば、上記好ましい態様16の構成に於いて、運転者による加減速操作量はブレーキペダルのストロークであるよう構成される(好ましい態様17)。
【0070】また本発明の他の一つの好ましい態様によれば、上記好ましい態様16の構成に於いて、運転者による加減速操作量はスロットル開度速度であるよう構成される(好ましい態様18)。
【0071】
【発明の実施の形態】以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。
【0072】第一の実施形態図1は本発明による減衰係数制御装置の第一の好ましい実施形態を示す概略構成図である。
【0073】図1に於て、10FL及び10FRはそれぞれ車輌12の左右の前輪を示し、10RL及び10RRはそれぞれ左右の後輪を示している。操舵輪である左右の前輪10FL及び10FRは運転者によるステアリングホイール14の転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置16によりタイロッド18L及び18Rを介して操舵される。
【0074】ばね下としての各車輪10FL〜10RRとばね上としての車体20との間にはそれぞれ減衰係数可変式のショックアブソーバ22FL〜22RRが配設されており、各ショックアブソーバの減衰係数Ci(i=fl、fr、rl、rr)は後述の如く車輌の旋回時に電気式制御装置24により制御される。
【0075】電気式制御装置24には車高センサ26FL、26FR、26RL、26RRより車輪10FL〜10RRのストロークXi(i=fl、fr、rl、rr)を示す信号、横加速度センサ28より車体の横加速度Gyを示す信号、ヨーレートセンサ30より車輌のヨーレートγを示す信号、車速センサ32より車速Vを示す信号、操舵角センサ34より操舵角δを示す信号が入力される。
【0076】尚図には詳細に示されていないが、電気式制御装置24は例えばCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータを含んでいる。また車高センサ26FL〜26RRは車輪のバウンド方向を正として車輪のストロークXiを検出し、横加速度センサ28及び操舵角センサ34は車輌の左旋回方向を正としてそれぞれ横加速度及び操舵角を検出する。
【0077】電気式制御装置24は、それぞれ図8(A)及び(B)に示された前輪側及び後輪側の車輌モデルに基づきショックアブソーバ22FL〜22RRの減衰係数を制御する。特にこの実施形態の電気式制御装置24は、後述の如く図2及び図3に示されたフローチャートに従って横加速度Gyに基づき車輌が過渡旋回状態にあるか否かを判別し、車輌が定常旋回状態にあるときには各車輪のショックアブソーバの減衰係数Ciを予め設定されたハードの減衰係数Chighに制御し、車輌が過渡旋回状態にあっても、車体のロール量が増大する過程に於いては旋回内側のショックアブソーバの減衰係数が旋回外側の減衰係数よりも高くなるよう制御し、逆に車体のロール量が減少する過程に於いては旋回外側のショックアブソーバの減衰係数が旋回内側の減衰係数よりも高くなるよう各ショックアブソーバの減衰係数を制御し、これにより過渡旋回時に於ける車高を低下させ車体の重心を低下させる。
【0078】また電気式制御装置24は、車速V及び操舵角δに基づき車輌の基準ヨーレートγtを演算し、車輌の実際のヨーレートγと基準ヨーレートγtとの偏差Δγを演算し、偏差Δγに基づき車輌がオーバステア状態又はアンダステア状態にあるか否かを判定し、車輌がオーバステア状態又はアンダステア状態にあるときには偏差Δγが小さくなるよう所定の距離の補正量ΔLf、ΔLr及び前輪側及び後輪側の各仮想のショックアブソーバの減衰係数の補正量ΔCgf、ΔCgr、ΔCf、ΔCrを演算し、その演算結果に基づき実際の各ショックアブソーバの減衰係数を制御する。
【0079】次に図2及び図3に示されたフローチャートを参照して図示の第一の実施形態に於ける減衰係数の制御について説明する。尚図2及び図3に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。
【0080】まずステップ10に於いては各車輪のストロークXiを示す信号等の読み込みが行われ、ステップ20に於いては検出されたヨーレートγよりノイズ成分を除去するためのフィルタ処理が行われることによりフィルタ処理後のヨーレートγfが演算される。
【0081】ステップ30に於いては操舵角δに基づき前輪の実舵角δfが演算され、HをホイールベースとしKhをスタビリティファクタとして下記の式30に従って目標ヨーレートγeが演算されると共に、Tを時定数としsをラプラス演算子として下記の式31に従って車速V及び操舵角δに基づく車輌の基準ヨーレートγtが演算される。尚目標ヨーレートγeは動的なヨーレートを考慮すべく車輌の横加速度Gyを加味して演算されてもよい。
γe=Vδ/(1+KhV2)H ……(30)
γt=γe/(1+Ts) ……(31)
【0082】ステップ40に於いては下記の式32に従ってヨーレート偏差Δγ、即ちフィルタ処理後のヨーレートγfと基準ヨーレートγtとの偏差が演算される。
Δγ=γf−γt ……(32)
【0083】ステップ50に於いてはフィルタ処理後のヨーレートγfが正の値であるか否かの判別、即ち車輌が左旋回状態にあるか否かの判別が行われ、否定判別が行われたときにはステップ70へ進み、肯定判別が行われたときにはステップ60へ進む。
【0084】ステップ60に於いてはヨーレート偏差Δγが正の値であるか否かの判別、即ち車輌がオーバステア状態にあるか否かの判別が行われ、肯定判別が行われたときにはステップ80へ進み、否定判別が行われたときにはステップ90へ進む。
【0085】同様にステップ70に於いてはヨーレート偏差Δγが負の値であるか否かの判別、即ち車輌がオーバステア状態にあるか否かの判別が行われ、肯定判別が行われたときにはステップ80へ進み、否定判別が行われたときにはステップ90へ進む。
【0086】ステップ80に於いてはヨーレート偏差Δγに基づき図4の第一及び第四象限に示されたグラフに対応するマップより前輪側の車輌モデルの所定の距離の補正量ΔLf、後輪側の車輌モデルの所定の距離の補正量ΔLr、前輪側の仮想のショックアブソーバ122Fの減衰係数の補正量ΔCgf、前輪側の仮想のショックアブソーバ124Fの減衰係数の補正量ΔCf、後輪側の仮想のショックアブソーバ122Rの減衰係数の補正量ΔCgr、後輪側の仮想のショックアブソーバ124Rの減衰係数の補正量ΔCrが演算される。
【0087】同様にステップ90に於いてはヨーレート偏差Δγに基づき図4の第二及び第三象限に示されたグラフに対応するマップより所定の距離の補正量ΔLf、ΔLr及び減衰係数の補正量ΔCgf、ΔCf、ΔCgr、ΔCrが演算される。
【0088】ステップ100に於いてはLfo及びLroをそれぞれ前輪側及び後輪側の車輌モデルの基本の所定の距離とし、Cgfo、Cgro、Cfo、Croをそれぞれ前輪側の仮想のショックアブソーバ122F、後輪側の仮想のショックアブソーバ122R、前輪側の仮想のショックアブソーバ124F及び後輪側の仮想のショックアブソーバ124Rについて予め設定された基本の減衰係数として、下記の式33〜38に従って所定の距離Lf、Lr及び各仮想のショックアブソーバの減衰係数Cgf、Cgr、Cf、Crが演算される。
【0089】Lf=Lfo+ΔLf ……(33)
Lr=Lro+ΔLr ……(34)
Cgf=Cgfo+ΔCgf ……(35)
Cgr=Cgro+ΔCgr ……(36)
Cf=Cfo+ΔCf ……(37)
Cr=Cro+ΔCr ……(38)
【0090】ステップ110に於いては例えば所定の距離Lf及びLrの前回値と今回値との偏差ΔLfa及びΔLraが演算されると共に、偏差ΔLfa及びΔLraの絶対値が基準値Lo(正の定数)を越えているときには偏差の絶対値がLoになるよう今回値が補正されることにより、所定の距離Lf及びLrの変化率が制限される処理が行われる。
【0091】ステップ120に於いては例えば減衰係数Cgf及びCgrの前回値と今回値との偏差ΔCgfa及びΔCgraが演算されると共に、偏差ΔCgfa及びΔCgraの絶対値が基準値Cgo(正の定数)を越えているときには偏差の絶対値がCgoになるよう今回値が補正されることにより、減衰係数Cgf及びCgrの変化率が制限される処理が行われる。また例えば減衰係数Cf及びCrの前回値と今回値との偏差ΔCfa及びΔCraが演算されると共に、偏差ΔCfa及びΔCraの絶対値が基準値Co(正の定数)を越えているときには偏差の絶対値がCoになるよう今回値が補正されることにより、減衰係数Cf及びCrの変化率が制限される処理が行われ、しかる後るステップ620へ進む。
【0092】ステップ620に於いては横加速度Gy の絶対値が制御のしきい値としての基準値Gyo(正の定数)を越えているか否かの判別、即ち車輪の旋回時に於けるショックアブソーバの減衰係数の制御が必要であるか否かの判別が行われ、肯定判別が行われたときにはステップ640へ進み、否定判別が行われたときにはステップ630へ進む。
【0093】ステップ630に於いては各車輪のショックアブソーバの減衰係数が車輌の非旋回時に於ける通常の制御ルーチンに従って設定され、しかる後ステップ780へ進む。尚この場合の減衰係数の制御は当技術分野に於いて公知の任意の要領にて行われてよい。
【0094】ステップ640に於いては横加速度Gy の時間微分値ΔGy が演算されると共に、時間微分値ΔGy の絶対値がその基準値ΔGyo(正の定数)を越えているか否かの判別、即ち車輌が過渡旋回状態にあるか否かの判別が行われ、肯定判別が行われたときにはステップ660へ進み、否定判別が行われたときはステップ650に於いて各車輪のショックアブソーバの減衰係数Ci が予め設定されたハードの減衰係数Chighに設定された後ステップ780へ進む。
【0095】ステップ660に於いては各車輪のストロークXi の時間微分値(ストローク速度)Xid(i=fl、fr、rl、rr)が演算され、ステップ670に於いては横加速度Gy が正であるか否かの判別、即ち車輌が左旋回状態にあるか否かの判別が行われ、肯定判別が行われたときにはステップ680へ進み、否定判別が行われたときにはステップ690へ進む。
【0096】ステップ680に於いては旋回内側前輪のストローク速度Xfindが左前輪のストローク速度Xfld に設定され、旋回外側前輪のストローク速度Xfoutd が右前輪のストローク速度Xfrd に設定され、旋回内側後輪のストローク速度Xrindが左後輪のストローク速度Xrld に設定され、旋回外側後輪のストローク速度Xroutd が右後輪のストローク速度Xrrd に設定される。
【0097】同様にステップ690に於いては旋回内側前輪のストローク速度Xfindが右前輪のストローク速度Xfrd に設定され、旋回外側前輪のストローク速度Xfoutdが左前輪のストローク速度Xfld に設定され、旋回内側後輪のストローク速度Xrindが右後輪のストローク速度Xrrd に設定され、旋回外側後輪のストローク速度Xroutd が左後輪のストローク速度Xrld に設定される。
【0098】ステップ700に於いてはsignGy を横加速度Gy の符号として横加速度の時間微分値ΔGy とsignGy との積が正であるか否かの判別、即ち車輌の旋回に起因する横加速度の大きさが増大過程にあり車体のロール量が増大する状況にあるか否かの判別が行われ、肯定判別が行われたときはステップ710に於いて旋回内側前輪、旋回外側前輪、旋回内側後輪、旋回外側後輪のショックアブソーバの減衰係数Cj (j=fin 、fout、rin 、rout)が前記式22〜25に従って演算され、否定判別が行われたときにはステップ720に於いて各ショックアブソーバの減衰係数Cj が前記式26〜29に従って演算される。
【0099】ステップ730に於いては左前輪のショックアブソーバの減衰係数Cflが旋回内側前輪の減衰係数Cfin に設定され、右前輪のショックアブソーバの減衰係数Cfrが旋回外側前輪の減衰係数Cfoutに設定され、左後輪のショックアブソーバの減衰係数Crlが旋回内側後輪の減衰係数Crin に設定され、右後輪のショックアブソーバの減衰係数Crrが旋回外側後輪の減衰係数Croutに設定される。
【0100】同様にステップ740に於いては横加速度の時間微分値ΔGy とsignGy との積が正であるか否かの判別が行われ、否定判別が行われたときはステップ750に於いて旋回内側前輪、旋回外側前輪、旋回内側後輪、旋回外側後輪のショックアブソーバの減衰係数Cj が前記式22〜25に従って演算され、肯定判別が行われたときにはステップ760に於いて各ショックアブソーバの減衰係数Cj が前記式26〜29に従って演算される。
【0101】ステップ770に於いては左前輪のショックアブソーバの減衰係数Cflが旋回外側前輪の減衰係数Cfoutに設定され、右前輪のショックアブソーバの減衰係数Cfrが旋回内側前輪の減衰係数Cfin に設定され、左後輪のショックアブソーバの減衰係数Crlが旋回外側後輪の減衰係数Croutに設定され、右後輪のショックアブソーバの減衰係数Crrが旋回内側後輪の減衰係数Crin に設定される。
【0102】ステップ780に於いては各ショックアブソーバの減衰係数がステップ630、650、730又は770に於いて設定された減衰係数になるよう制御され、しかる後ステップ10へ戻る。
【0103】かくして図示の第一の実施形態によれば、ステップ620に於いて車輪の旋回時に於けるショックアブソーバの減衰係数の制御が必要であるか否かの判別が行われ、ステップ640に於いて車輌が過渡旋回状態にあるか否かの判別が行われ、ステップ670に於いて車輌の旋回方向が判定され、ステップ660、680及び690に於いて各車輪のストローク速度が求められ、ステップ700及び740に於いて車体のロール量が増大する過程にあるか否かの判別が行われ、車体のロール量が増大する過程にあるときにはステップ710及び750に於いて各ショックアブソーバの減衰係数Cj が式22〜25に従って演算され、車体のロール量が減少する過程にあるときにはステップ720及び760に於いて各ショックアブソーバの減衰係数Cj が式26〜29に従って演算される。
【0104】従って図示の第一の実施形態によれば、車輌が車体のロール量が増大する過渡旋回状態にあるときには、旋回内側のショックアブソーバの減衰係数が旋回外側の減衰係数よりも高くなるよう各ショックアブソーバの減衰係数が制御され、逆に車輌が車体のロール量が減少する過渡旋回状態にあるときには、旋回外側のショックアブソーバの減衰係数が旋回内側の減衰係数よりも高くなるよう各ショックアブソーバの減衰係数が制御されるので、車高を低下させ車体の重心を低下させて過渡旋回時に於ける車輌の運動性能を向上させることができる。
【0105】また図示の第一の実施形態によれば、左右前輪のショックアブソーバの減衰係数及び左右後輪のショックアブソーバの減衰係数は相互に独立して制御されるので、例えば前記式20〜29に於けるWf 及びWrを適宜に設定し、補正量ΔLf及びΔLr、ΔCgf及びΔCgr、ΔCf及びΔCrを演算するためのマップ(図4)を適宜に設定することにより、車輌の過渡旋回時に於ける車体の前後方向の姿勢を制御し、例えば旋回初期に於ける車体のノーズダイブを低減したり、旋回終期に於ける車体のノーズリフトを低減したりすることができる。
【0106】また図示の第一の実施形態によれば、車体のロール量が増大過程又は減少過程にあるか否かの判定は車体の横加速度Gy に基づき行われるので、例えば車高センサ26FL〜26RRにより検出される各輪のストロークXi に基づき車体の実際のロール量が演算され、その実際のロール量に基づき車体ロール量が増大過程又は減少過程にあるか否かが判定される場合に比して応答性よく各ショックアブソーバの減衰係数を制御することができる。
【0107】尚ステップ620〜780は第一乃至第四の実施形態に於いて共通であるので、以上の各作用効果は後述の第二乃至第四の実施形態に於いても同様に得られる。
【0108】特に図示の第一の実施形態によれば、ステップ30に於いて車輌の基準ヨーレートγtが演算され、ステップ40に於いて実ヨーレートγfと基準ヨーレートγtとの偏差Δγが演算され、ステップ50〜70に於いて車輌がオーバステア状態又はアンダステア状態にあるか否かの判別が行われ、車輌がオーバステア状態にあるときにはステップ80及び100に於いて前輪側の車輌モデルの所定の距離Lf及び前輪側の仮想のショックアブソーバの減衰係数Cgf、Cfが偏差Δγに応じて増大補正されると共に、後輪側の車輌モデルの所定の距離Lr及び後輪側の仮想のショックアブソーバの減衰係数Cgr、Crが偏差Δγに応じて低減補正される。
【0109】逆に車輌がアンダステア状態にあるときにはステップ90及び100に於いて前輪側の車輌モデルの所定の距離Lf及び前輪側の仮想のショックアブソーバの減衰係数Cgf、Cfが偏差Δγに応じて低減補正されると共に、後輪側の車輌モデルの所定の距離Lr及び後輪側の仮想のショックアブソーバの減衰係数Cgr、Crが偏差Δγに応じて増大補正される。
【0110】従って第一の実施形態によれば、車輌がオーバステア状態にあるときにはオーバステア状態の程度に応じて前輪側のロール剛性が増大されると共に後輪側のロール剛性が低減され、車輌がアンダステア状態にあるときにはアンダステア状態の程度に応じて前輪側のロール剛性が低減されると共に後輪側のロール剛性が増大されるので、車輌のステア変化を低減して車輌の操縦安定性を向上させることができる。
【0111】また図示の第一の実施形態によれば、車輌モデルの所定の距離Lf及びLrに加えて仮想のショックアブソーバの減衰係数Cgf、Cf、Cgr、Crも偏差Δγに応じて増減補正されるので、車輌モデルの所定の距離のみが偏差Δγに応じて増減補正される場合に比して実際のショックアブソーバの減衰係数を的確に制御することができる。
【0112】また図示の第一の実施形態によれば、ステップ110に於いて所定の距離Lf及びLrの変化率が制限され、またステップ120に於いて減衰係数Cgf、Cf、Cgr、Crの変化率が制限されるので、かかる変化率の制限処理が行われない場合に比してショックアブソーバの減衰力の急激な変化及びこれに起因する車輌の乗り心地性の悪化を確実に防止することができる。
【0113】尚図示の第一の実施形態に於いては、車輌のヨーレートγはヨーレートセンサ30により検出されるようになっているが、操舵輪である左右前輪の車輪速度Vwfl及びVwfrが検出され、Trを車輌のトレッドとして車輪速度に基づき下記の式39に従って演算されてもよい。
γ=(Vwfr−Vwfl)/Tr ……(39)
【0114】また図示の第一の実施形態に於いては、車輌モデルの所定の距離Lf及びLrに加えて仮想のショックアブソーバの減衰係数Cgf、Cf、Cgr、Crも偏差Δγに応じて増減補正されるようになっているが、減衰係数Cgf、Cf、Cgr、Crの増減補正は省略されてもよい。また図示の実施形態に於いては、同一の偏差Δγについて見て減衰係数Cgf及びCgrの増減補正量は、減衰係数Cf及びCrの増減補正量よりも大きく設定されているが、減衰係数Cf及びCrの増減補正量が減衰係数Cgf及びCgrの増減補正量よりも大きく設定されてもよく、更には減衰係数Cgf、Cgr及び減衰係数Cf、Crの一方の増減補正が省略されてもよい。
【0115】更に図示の第一の実施形態に於いては、車輌の目標ヨーレートγeは上記式30に従って演算されるようになっているが、車速V及び操舵角δに基づき図5に示されたグラフに対応するマップより演算されてもよい。
【0116】第二の実施形態図9は本発明による減衰係数制御装置の第二の好ましい実施形態に於ける減衰係数制御ルーチンの前半を示すフローチャートである。
【0117】図には示されていないが、この第二の実施形態の電気式制御装置24には車輌のヨーレートγを示す信号、車速Vを示す信号、操舵角δを示す信号は入力されず、スロットル開度センサよりエンジンのスロットル開度Thを示す信号及びブレーキストロークセンサよりブレーキペダルの踏み込みストロークSbを示す信号も入力されるようになっている。
【0118】またこの第二の実施形態の減衰係数制御ルーチンのステップ210に於いては各車輪のストロークXiを示す信号等の読み込みが行われ、ステップ220に於いては例えばスロットル開度Thの時間微分値としてスロットル開度速度Vtが演算される。
【0119】ステップ230に於いてはスロットル開度速度Vt及び車速Vに基づき図10(前輪駆動車)又は図11(後輪駆動車)に示されたグラフに対応するマップより前輪側の所定の距離Lfに対する配分比Kaが演算される。
【0120】ステップ240に於いてはブレーキストロークSbに基づき図12に示されたグラフに対応するマップより前輪側の所定の距離Lfに対する配分比Kbが演算される。
【0121】ステップ250に於いてはそれぞれ下記の式40及び41に従って前輪側の所定の距離Lf及び後輪側の距離Lrが演算され、しかる後ステップ620へ進む。
Lf=KaKbLfo ……(40)
Lr=(1−Ka)(1−Kb)Lro ……(41)
【0122】かくして図示の第二の実施形態によれば、ステップ220に於いてスロットル開度速度Vtが演算され、ステップ230に於いてスロットル開度速度Vt及び車速Vに基づき前輪側の所定の距離Lfに対する配分比Kaが演算され、ステップ250に於いて配分比Kaに基づく前後輪の配分比にて前輪側の所定の距離Lf及び後輪側の所定の距離Lrが演算される。
【0123】一般に、前輪駆動車の場合には車輌の加速時に前輪の駆動力に起因して車輌のステア特性がアンダステア側へ変化し、逆に後輪駆動車の場合には後輪の駆動力に起因して車輌のステア特性がオーバステア側へ変化するが、図示の第二の実施形態によれば、車輌が前輪駆動車である場合には車輌の加速時に前輪側の所定の距離Lfに対する後輪側の所定の距離Lrの比が増大されるので、車輌のアンダステア側へのステア特性の変化が低減され、また車輌が後輪駆動車である場合には車輌の加速時に後輪側の所定の距離Lrに対する前輪側の所定の距離Lfの比が増大されるので、車輌のオーバステア側へのステア特性の変化が低減され、従って車輌の操縦安定性を向上させることができる。
【0124】また図示の第二の実施形態によれば、ステップ240に於いてブレーキストロークSbに基づき前輪側の所定の距離Lfに対する配分比Kbが演算され、ステップ250に於いて配分比Kbに基づく前後輪の配分比にて前輪側の所定の距離Lf及び後輪側の所定の距離Lrが演算される。
【0125】従って第二の実施形態によれば、車輌の制動時に於ける車輌前方への荷重移動に起因するオーバステア側へのステア特性の変化を低減し、これにより車輌の操縦安定性を向上させることができる。
【0126】また図示の第二の実施形態によれば、車輌の加減速度は運転者の制動操作量であるブレーキストロークSb及び運転者の加速操作量であるスロットル開度速度に基づき推定されるので、車輌の加減速度が例えば前後加速度センサにより検出される場合に比して応答性よく各車輪のショックアブソーバの減衰係数を制御することができる。
【0127】尚図示の第二の実施形態に於いては、車輌のピッチング状態量としての車輌の加速度はスロットル開度速度Vtに基づき推定されるようになっているが、車輌の加速度は例えば自動変速機のトルクコンバータの出力トルク等に基づき推定されてもよい。また車輌のピッチング状態量としての車輌の減速度はブレーキストロークSbに基づき推定されるようになっているが、車輌の減速度は例えば図には示されていないブレーキペダルの踏力やブレーキマスタシリンダ内の圧力に基づき推定されてもよい。
【0128】第三の実施形態図13は本発明による減衰係数制御装置の第三の好ましい実施形態に於ける減衰係数制御ルーチンの前半を示すフローチャートである。
【0129】またこの第三の実施形態の減衰係数制御ルーチンのステップ260に於いては各車輪のストロークXiを示す信号等の読み込みが行われ、ステップ270に於いては例えば操舵角δの時間微分値として操舵角速度δdが演算されると共に、K1及びK2をそれぞれ正の定数として下記の式42に従って車輌の横加加速度の大きさJyが演算される。
Jy=|K1δV2+K2δV2| ……(42)
【0130】ステップ280に於いては車輌の横加加速度の大きさJyに基づき図14に示されたグラフに対応するマップより前輪側の所定の距離Lf及び後輪側の所定の距離Lrが演算され、しかる後ステップ620へ進む。
【0131】かくして図示の第三の実施形態によれば、車輌の横加加速度の大きさJyが大きいほど大きくなるよう所定の距離Lf及びLrが可変設定されるので、車体のロール角の変化が生じ易いほど車輌のロール剛性を増大し、これにより車輌の過渡旋回時に於ける車体のロールの姿勢変化を車輌の旋回状況に応じて適切に抑制することができる。
【0132】また図示の第三の実施形態によれば、車輌の横加加速度の大きさJyが極端に大きいときには、横加加速度の大きさJyの増大につれて所定の距離Lf及びLrが漸次低減されるので、運転者により非常に急激な過渡旋回操作が行われるときには車体がロールし、これにより運転者に減速するなどの適当な処置を講ずるよう注意を喚起することができる。
【0133】第四の実施形態図15は本発明による減衰係数制御装置の第四の好ましい実施形態に於ける減衰係数制御ルーチンの前半を示すフローチャートである。
【0134】図には示されていないが、この第四の実施形態の電気式制御装置24には車輌のヨーレートγを示す信号、車速Vを示す信号、操舵角δを示す信号は入力されないが、対応する圧力センサにより検出されるショックアブソーバ22FL〜22RRのシリンダ上室内の圧力Pui(i=fl、fr、rl、rr)及びシリンダ下室内の圧力Pli(i=fl、fr、rl、rr)を示す信号も入力されるようになっている。
【0135】またこの第四の実施形態の減衰係数制御ルーチンのステップ310に於いては各車輪のストロークXiを示す信号等の読み込みが行われ、ステップ320に於いては下記の式43乃至式46に従ってそれぞれショックアブソーバ22FL〜22RRのシリンダ上室内の圧力Puiとシリンダ下室内の圧力Pliとの差圧Pdfi(i=fl、fr、rl、rr)が演算される。
【0136】Pdffl=Pufl−Plfl ……(43)
Pdffr=Pufr−Plfr ……(44)
Pdfrl=Purl−Plrl ……(45)
Pdfrr=Purr−Plrr ……(46)
【0137】ステップ330に於いてはMAXを( )内の数値の大きい方の値として下記の式47に従って前輪側の代表差圧Pdffが演算され、ステップ340に於いては前輪側の代表差圧Pdffに基づき図16に示されたグラフに対応するマップより前輪側の所定の距離Lfが演算される。
Pdff=MAX(Pdffl,Pdffr) ……(47)
【0138】ステップ350に於いては下記の式48に従って後輪側の代表差圧Pdfrが演算され、ステップ360に於いては後輪側の代表差圧Pdfrに基づき図17に示されたグラフに対応するマップより後輪側の所定の距離Lrが演算され、しかる後ステップ620へ進む。
Pdfr=MAX(Pdfrl,Pdfrr) ……(48)
【0139】かくしてこの第四の実施形態によれば、ステップ320に於いて各ショックアブソーバ22FL〜22RRのシリンダ上室内の圧力Puiとシリンダ下室内の圧力Pliとの差圧Pdfiが演算され、ステップ330に於いて差圧Pdffl及びPdffrの大きい方の値が前輪側の代表差圧Pdffに設定され、ステップ340に於いて前輪側の代表差圧Pdffに基づき代表差圧が大きいほど大きくなるよう前輪側の所定の距離Lfが演算される。ステップ350に於いて差圧Pdfrl及びPdfrrの大きい方の値が後輪側の代表差圧Pdfrに設定され、ステップ360に於いて後輪側の代表差圧Pdfrに基づき代表差圧が大きいほど大きくなるよう後輪側の所定の距離Lrが演算される。
【0140】従って第四の実施形態によれば、代表差圧が大きいほど、換言すれば車体と車輪との間の相対変位の速度が高いほど車輌モデルの所定の距離が増大されることによって実際のショックアブソーバの減衰係数が増大されるので、車輌の過渡旋回時に於ける外乱に起因する車体の姿勢変化を低減することができ、また車輪の接地性を向上させて車輌の過渡旋回時の運動性能を向上させることができる。
【0141】第五の実施形態図19は本発明による減衰係数制御装置の第五の好ましい実施形態に於ける減衰係数制御ルーチンの前半を示すフローチャートである。
【0142】この第五の実施形態の減衰係数制御ルーチンのステップ410に於いては各車輪のストロークXiを示す信号等の読み込みが行われ、ステップ420に於いては横加速度Gyと車速V及びヨーレートγの積Vγとの偏差Gy−Vγとして横加速度の偏差、即ち車輌の横すべり加速度Vydが演算され、横すべり加速度Vydが積分されることにより車体の横すべり速度Vyが演算され、車体の前後速度Vx(=車速V)に対する車体の横すべり速度Vyの比Vy/Vxとして車体のスリップ角βが演算される。
【0143】ステップ430に於いては例えば車体のスリップ角βの時間微分値として車体のスリップ角の変化率βdが演算されると共に、車体のスリップ角β及びその変化率βdに基づき図20に示されたグラフに対応するマップより車輌がどの領域にあるかの判定が行われ、ステップ440に於いては前輪側の所定の距離Lfに対する補正係数Kf及び後輪側の所定の距離Lrに対する補正係数Krがそれぞれ1にセットされる。
【0144】尚図20のグラフに於いて、領域Aは車輌の通常の安定的な走行状態を示し、領域Bは車輌がスピン傾向の状態にある領域を示し、領域Cは車輌がドリフトアウト傾向の状態にある領域を示し、領域Dは車輌の旋回挙動が発散する領域を示している。
【0145】ステップ450に於いては車輌が領域Bにあるか否かの判別が行われ、否定判別が行われたときにはステップ470へ進み、肯定判別が行われたときにはステップ460に於いて車体のスリップ角βの絶対値に基づき図21に示されたグラフに対応するマップより補正係数Kfが演算される。
【0146】ステップ470に於いては車輌が領域Cにあるか否かの判別が行われ、否定判別が行われたときにはステップ490へ進み、肯定判別が行われたときはにステップ480に於いて車体のスリップ角βの絶対値に基づき図22に示されたグラフに対応するマップより補正係数Krが演算される。
【0147】ステップ490に於いては車輌が領域Dにあるか否かの判別が行われ、否定判別が行われたときにはステップ510へ進み、肯定判別が行われたときにはステップ500に於いて車体のスリップ角βの絶対値に基づき補正係数Kf及びKrが演算される。
【0148】ステップ510に於いては前輪側の所定の距離Lf及び後輪側の所定の距離Lrがそれぞれ下記の式49及び50に従って演算され、ステップ520に於いては第一の実施形態に於けるステップ110の場合と同一の要領にて所定の距離Lf及びLrの変化率の制限処理が行われ、しかる後ステップ620へ進む。
Lf=KfLfo ……(49)
Lr=KrLro ……(50)
【0149】かくして図示の第五の実施形態によれば、ステップ420に於いて車体のスリップ角βが演算され、ステップ430に於いて車体のスリップ角の変化率βdが演算されると共に、車体のスリップ角β及びその変化率βdに車輌が旋回挙動のどの領域にあるかの判定が行われ、ステップ450に於いて車輌が領域B、即ちスピン傾向の状態にあると判定されたときには、ステップ460に於いて車体のスリップ角βの絶対値が大きいほど大きくなるよう前輪の車輌モデルの所定の距離Lfが増大され、これにより前輪側の車輌のロール剛性が増大される。
【0150】またステップ470に於いて車輌が領域C、即ちドリフトアウト傾向の状態にあると判定されると、ステップ480に於いて車体のスリップ角βの絶対値が大きいほど大きくなるよう後輪の車輌モデルの所定の距離Lrが増大され、これにより後輪側の車輌のロール剛性が増大される。
【0151】更にステップ490に於いて車輌が領域D、即ち車輌の旋回挙動が発散する領域にあると判定されると、ステップ500に於いて車体のスリップ角βの絶対値が大きいほど大きくなるよう前輪及び後輪の車輌モデルの所定の距離Lf及びLrが増大され、これにより車輌全体のロール剛性が増大される。
【0152】従って第五の実施形態によれば、車輌の過渡旋回時に於ける車輌の旋回挙動を判定し、その判定結果に応じて実際のショックアブソーバの減衰係数を適切に制御し、これにより車輌のスピンやドリフトアウトの如き旋回挙動の悪化を効果的に抑制することができる。
【0153】また第五の実施形態によれば、ステップ520に於いて所定の距離Lf及びLrの変化率が制限されるので、かかる変化率の制限処理が行われない場合に比してショックアブソーバの減衰力の急激な変化及びこれに起因する車輌の乗り心地性の悪化を確実に防止することができる。
【0154】以上に於ては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
【0155】例えば上述の各実施形態に於いては、車体ロール量の増大過程に於いては旋回内側のショックアブソーバの減衰係数が旋回外側のショックアブソーバの減衰係数よりも相対的に高く制御され、逆に車体ロール量の減少過程に於いては旋回外側のショックアブソーバの減衰係数が旋回内側のショックアブソーバの減衰係数よりも高く制御されるようになっているが、一般に車体ロール量の減少過程(旋回終期)に於いて車輌の挙動が不安定になる虞れは車体ロール量の増大過程(旋回初期)に比して低いので、車体ロール量の減少過程に於いて旋回外側のショックアブソーバの減衰係数を旋回内側のショックアブソーバの減衰係数よりも高くする制御が省略されてもよい。
【0156】具体的にはステップ720及び760に於ける減衰係数Cj の演算が省略され、その代わりに各ショックアブソーバの減衰係数Ci が例えばステップ650の場合と同様ハードの減衰係数Chighに設定され、しかる後ステップ780へ進むよう修正されてもよい。
【0157】また上述の各実施形態に於いては、車輌の旋回方向の判定は車体の横加速度Gyの符号に基づき判定されるようになっているが、例えばKhをスタビリティファクタとし、Rgをステアリングギヤ比とし、Hをホイールベースとして、図1に示された操舵角センサ28により検出される操舵角δ及び図1には示されていない車速センサにより検出される車速Vに基づき、下記の式51に基づき車輌の横加速度Gysが推定され、その推定された横加速度に基づき行われてもよい。
Gys=V2δ/[(1+Kh V2)Rg H] ……(51)
【0158】同様に、車速及び操舵角に基づき車輌のヨーレートγhが推定され、その符号に基づき車輌の旋回方向が判定されてもよい。尚かくして車体の推定横加速度Gys又は推定ヨーレートγhに基づき車輌の旋回方向が判定される場合には、例えばカウンタステアの場合の如く判定される車輌の旋回方向が車輌の実際の旋回方向とは逆になる場合があるので、(1)車体の推定横加速度Gys又は推定ヨーレートγhに基づく旋回方向の判定と、(2)車体の実際の横加速度Gy又は左右の操舵輪の車輪速度に基づき推定されるヨーレートγh又は左右のショックアブソーバの内圧の差又は左右の車輪のストローク速度の差又は左右のばね上速度の差に基づく旋回方向の判定とが行われ、両者の判定が異なるときには後者の判定が採用されるよう修正されてもよい。
【0159】また上述の各実施形態に於いては、車体の横加速度Gyの時間微分値ΔGyの符号に基づき車体ロール量が増大過程又は減少過程にあるか否かの判定が行われるようになっているが、この判定は例えば上記の式51に従って演算される推定横加速度Gysに基づき行われてもよく、また車高センサ26FL〜26RRにより検出されるストロークXiに基づき演算される車体のロールレートの符号に基づき行われてもよい。またこの場合ロールレートは図1には示されていないロールレートセンサにより検出されてもよい。
【0160】また上述の各実施形態に於いては、各車輪のストローク速度Xidは車高センサ26FL〜26RRの検出結果に基づき演算されるようになっているが、各車輪のストローク速度は車体に設けられた上下加速度センサ(図示せず)により検出される車体の上下加速度Gbiに基づきオブザーバにより推定され、車高センサが省略されてもよい。
【0161】また上述の第二乃至第五の実施形態に於いては、所定の距離Lf、Lrのみが可変設定されるようになっているが、第一の実施形態の場合と同様、これらの実施形態に於いても所定の距離Lf、Lrと共に仮想のショックアブソーバの減衰係数Cgf、Cgr、Cf、Crが車輌の状態量に応じて可変設定されてもよい。
【0162】また上述の第一の実施形態に於いては、所定の距離Lf、Lr及び仮想のショックアブソーバの減衰係数Cgf、Cgr、Cf、Crの変化率が制限され、第五の実施形態に於いては所定の距離Lf、Lrの変化率が制限されるようになっているが、これらの変化率制限処理は省略されてもよく、また第二乃至第四の実施形態に於いても所定の距離Lf、Lrの変化率が制限されるよう修正されてもよい。
【0163】更に上述の第二の実施形態に於いては、スロットル開度速度Vt及びブレーキストロークSbの両者に基づき所定の距離Lf、Lr及びそれらの比が変更されるようになっているが、所定の距離Lf、Lr及びそれらの比はスロットル開度速度Vt及びブレーキストロークSbの一方のみに基づき変更されるよう修正されてもよい。
【0164】
【発明の効果】以上の説明より明らかである如く、本発明の請求項1の構成によれば、車輌の過渡旋回時に第二の仮想のショックアブソーバによってばね上の旋回内輪側のリフトが抑制されるので、ばね上の重心を低下させて車輌の旋回時の運動性能を向上させることができると共に、車輌の状態量に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数を車輌の状態量に応じて適切に制御し、これにより車輌の状態量の如何に拘わらず車輌モデルの所定の距離が一定である場合に比して、車輌の過渡旋回時に於ける車輌のステア特性の変化やばね上の姿勢変化の抑制を車輌の走行状態に応じて適切に行うことができる。
【0165】また請求項2の構成によれば、車輌モデルは前輪の車輌モデルと後輪の車輌モデルとよりなるので、前輪側及び後輪側の実際のショックアブソーバの減衰係数を車輌の状態量に応じて適切に制御し、これにより車輌モデルが一つである場合に比して、車輌の過渡旋回時に於ける車輌のステア特性の変化やばね上の姿勢変化の抑制を車輌の走行状態に応じて適切に制御することができる。
【0166】また請求項3の構成によれば、車輌の旋回挙動に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数を車輌の旋回挙動に応じて適切に制御し、これにより車輌の旋回挙動の如何に拘わらず車輌モデルの所定の距離が一定である場合に比して、車輌の過渡旋回時に於ける車輌のステア特性の変化を適切に抑制することができる。
【0167】また請求項4の構成によれば、車輌の横加加速度に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数を車輌の横加加速度に応じて適切に制御し、これにより車輌の横加加速度の如何に拘わらず車輌モデルの所定の距離が一定である場合に比して、車輌の過渡旋回時に於けるばね上のロール姿勢変化を適切に抑制することができる。
【0168】また請求項5の構成によれば、実際のショックアブソーバの二つのシリンダ室内圧力の差圧に応じて車輌モデルの所定の距離が可変設定されるので、実際のショックアブソーバの減衰係数を二つのシリンダ室内圧力の差圧に応じて適切に制御し、これによりばね上の姿勢変化を適切に制御することができる。
【0169】また請求項6の構成によれば、車輌の旋回挙動に応じて二つの車輌モデルの所定の距離の比が可変設定されるので、実際のショックアブソーバの減衰係数が車輌の旋回挙動に応じて適切に制御され、これにより車輌の旋回挙動の如何に拘わらず二つの車輌モデルの所定の距離の比が一定である場合に比して、車輌の過渡旋回時に於けるばね上のピッチ姿勢変化及びこれに起因するステア特性の変化を適切に抑制することができる。
【出願人】 【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
【出願日】 平成11年7月15日(1999.7.15)
【代理人】 【識別番号】100071216
【弁理士】
【氏名又は名称】明石 昌毅
【公開番号】 特開2001−30728(P2001−30728A)
【公開日】 平成13年2月6日(2001.2.6)
【出願番号】 特願平11−201623